AIにおけるエキスパートの混合(MoE)モデル:Python PyTorchコーディングの簡単なチュートリアル

「AIエキスパートによるMoE(混合)モデル:Python PyTorchコーディングの簡単チュートリアル」

オーサーによって提供されたDALL·E 3生成の画像。もちろん、「Mixture」のスペルが間違っています。

人工知能において、エキスパートの混合(MoE)の概念は、協力的な知能の象徴であり、「全体はその部分の総和よりも偉大である」という言葉を具現化しています。MoEモデルは、さまざまなエキスパートモデルの強みを集め、優れた予測を提供します。それはゲーティングネットワークエキスパートネットワークのコレクションを中心に構築されており、それぞれが特定のタスクの異なる側面に精通しています。

私はMoEのコンセプトを親しみやすいコード断片を通じて説明するビデオをまとめました。私はそのビデオがMoEの内部機能をより理解しやすくするのに役立つことを願っています。

この記事では、ビデオで使用した同じコードについて詳しく説明します。コードについて説明する前に、まずはMixture of Expertsのアーキテクチャについて少し議論しましょう。

MoEのアーキテクチャ

MoEは、2つのタイプのネットワークで構成されています:(1)エキスパートネットワークと(2)ゲーティングネットワーク。

  1. エキスパートネットワーク:エキスパートネットワークは、各々がデータのサブセットで優れたトレーニングを受けた専門モデルです。MoEのアイデアは、相補的な強みを持つ複数のエキスパートを持つことで、問題空間の包括的なカバレッジを確保することです。
  2. ゲーティングネットワーク:ゲーティングネットワークは、個々のエキスパートの貢献を指揮または管理する指揮者としての役割を果たします。それは、どのネットワークがどのような種類の入力を処理するのに優れているかを学習(または重み付け)します。トレーニングされたゲーティングネットワークは、新しい入力ベクトルを評価し、最も適したエキスパートまたはエキスパートの組み合わせによる処理の責任を割り当てることができます。ゲーティングネットワークは、現在の入力に関連するエキスパートの出力の重み付けを動的に調整し、適切な応答を保証します。
エキスパートの混合のコンセプト。オーサーによる画像。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

ディープAIの共同創業者兼CEO、ケビン・バラゴナ氏- インタビューシリーズ

ディープAIの創設者であるケビン・バラゴナは、10年以上の経験を持つプロのソフトウェアエンジニア兼製品開発者です彼の目標...

人工知能

「コマンドバーの創設者兼CEO、ジェームズ・エバンスによるインタビューシリーズ」

ジェームズ・エバンズは、CommandBarの創設者兼CEOであり、製品、マーケティング、顧客チームを支援するために設計されたAIパ...

人工知能

「Kognitosの創設者兼CEO、ビニー・ギル- インタビューシリーズ」

ビニー・ギルは、複数の役職と企業を横断する多様で幅広い業務経験を持っていますビニーは現在、Kognitosの創設者兼CEOであり...

人工知能

『ジュリエット・パウエル&アート・クライナー、The AI Dilemma – インタビューシリーズの著者』

『AIのジレンマ』は、ジュリエット・パウエルとアート・クライナーによって書かれましたジュリエット・パウエルは、著者であ...

人工知能

Diginiのスマートセンスの社長、ガイ・イエヒアブによるインタビューシリーズ

ガイ・イハイアヴ氏は、ビジネスの成功に最も重要な資産を保護するためにインターネット・オブ・シングス(IoT)の力を活用す...

人工知能

「Ntropyの共同創設者兼CEO、ナレ・ヴァルダニアンについて - インタビューシリーズ」

「Ntropyの共同創設者兼CEOであるナレ・ヴァルダニアンは、超人的な精度で100ミリ秒以下で金融取引を解析することを可能にす...