AIにおけるエキスパートの混合(MoE)モデル:Python PyTorchコーディングの簡単なチュートリアル

「AIエキスパートによるMoE(混合)モデル:Python PyTorchコーディングの簡単チュートリアル」

オーサーによって提供されたDALL·E 3生成の画像。もちろん、「Mixture」のスペルが間違っています。

人工知能において、エキスパートの混合(MoE)の概念は、協力的な知能の象徴であり、「全体はその部分の総和よりも偉大である」という言葉を具現化しています。MoEモデルは、さまざまなエキスパートモデルの強みを集め、優れた予測を提供します。それはゲーティングネットワークエキスパートネットワークのコレクションを中心に構築されており、それぞれが特定のタスクの異なる側面に精通しています。

私はMoEのコンセプトを親しみやすいコード断片を通じて説明するビデオをまとめました。私はそのビデオがMoEの内部機能をより理解しやすくするのに役立つことを願っています。

この記事では、ビデオで使用した同じコードについて詳しく説明します。コードについて説明する前に、まずはMixture of Expertsのアーキテクチャについて少し議論しましょう。

MoEのアーキテクチャ

MoEは、2つのタイプのネットワークで構成されています:(1)エキスパートネットワークと(2)ゲーティングネットワーク。

  1. エキスパートネットワーク:エキスパートネットワークは、各々がデータのサブセットで優れたトレーニングを受けた専門モデルです。MoEのアイデアは、相補的な強みを持つ複数のエキスパートを持つことで、問題空間の包括的なカバレッジを確保することです。
  2. ゲーティングネットワーク:ゲーティングネットワークは、個々のエキスパートの貢献を指揮または管理する指揮者としての役割を果たします。それは、どのネットワークがどのような種類の入力を処理するのに優れているかを学習(または重み付け)します。トレーニングされたゲーティングネットワークは、新しい入力ベクトルを評価し、最も適したエキスパートまたはエキスパートの組み合わせによる処理の責任を割り当てることができます。ゲーティングネットワークは、現在の入力に関連するエキスパートの出力の重み付けを動的に調整し、適切な応答を保証します。
エキスパートの混合のコンセプト。オーサーによる画像。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AIテクノロジー

「LXTのテクノロジーバイスプレジデント、アムル・ヌール・エルディン - インタビューシリーズ」

アムル・ヌール・エルディンは、LXTのテクノロジー担当副社長ですアムルは、自動音声認識(ASR)の文脈での音声/音響処理と機...

人工知能

「マーシャンの共同創設者であるイータン・ギンスバーグについてのインタビューシリーズ」

エタン・ギンズバーグは、マーシャンの共同創業者であり、すべてのプロンプトを最適なLLMに動的にルーティングするプラットフ...

人工知能

アーティスの創設者兼CEO、ウィリアム・ウーによるインタビューシリーズ

ウィリアム・ウーは、Artisseの創設者兼CEOであり、ユーザーの好みに基づいて写真を精密に変更する技術を提供していますそれ...

人工知能

「ElaiのCEO&共同創業者、Vitalii Romanchenkoについてのインタビューシリーズ」

ヴィタリー・ロマンチェンコは、ElaiのCEO兼共同創設者であり、マイク、カメラ、俳優、スタジオの必要なく、個人が一流のビデ...

人工知能

「リオール・ハキム、Hour Oneの共同創設者兼CTO - インタビューシリーズ」

「Hour Oneの共同創設者兼最高技術責任者であるリオール・ハキムは、専門的なビデオコミュニケーションのためのバーチャルヒ...

人工知能

「コーネリスネットワークスのソフトウェアエンジニアリング担当副社長、ダグ・フラーラー氏 - インタビューシリーズ」

ソフトウェアエンジニアリングの副社長として、DougはCornelis Networksのソフトウェアスタック全体、Omni-Path Architecture...