「AIが大気衝撃波から津波の初期兆候を見つけることができる」

AI can detect the initial signs of a tsunami from atmospheric shockwaves.

.fav_bar { float:left; border:1px solid #a7b1b5; margin-top:10px; margin-bottom:20px; } .fav_bar span.fav_bar-label { text-align:center; padding:8px 0px 0px 0px; float:left; margin-left:-1px; border-right:1px dotted #a7b1b5; border-left:1px solid #a7b1b5; display:block; width:69px; height:24px; color:#6e7476; font-weight:bold; font-size:12px; text-transform:uppercase; font-family:Arial, Helvetica, sans-serif; } .fav_bar a, #plus-one { float:left; border-right:1px dotted #a7b1b5; display:block; width:36px; height:32px; text-indent:-9999px; } .fav_bar a.fav_de { background: url(../images/icons/de.gif) no-repeat 0 0 #fff } .fav_bar a.fav_de:hover { background: url(../images/icons/de.gif) no-repeat 0 0 #e6e9ea } .fav_bar a.fav_acm_digital { background:url(‘../images/icons/acm_digital_library.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_acm_digital:hover { background:url(‘../images/icons/acm_digital_library.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.fav_pdf { background:url(‘../images/icons/pdf.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_pdf:hover { background:url(‘../images/icons/pdf.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.fav_more .at-icon-wrapper{ height: 33px !important ; width: 35px !important; padding: 0 !important; border-right: none !important; } .a2a_kit { line-height: 24px !important; width: unset !important; height: unset !important; padding: 0 !important; border-right: unset !important; border-left: unset !important; } .fav_bar .a2a_kit a .a2a_svg { margin-left: 7px; margin-top: 4px; padding: unset !important; }

津波の早期検出システムは、衛星群からのデータ共有のために国際的な協力が必要です。 ¶ クレジット:DigitalGlobe/Getty Images

フロリダ州に拠点を置く衛星製造会社Terran Orbital Corp.の研究者は、オフシェルフの人工知能(AI)モデルがGPS衛星からの2次元(2D)画像で津波の初期兆候を検出できることを発見しました。

研究者は、NASAのジェット推進研究所とイタリアのサピエンツァ大学の研究者が開発したコンピューターアルゴリズムによって生成されたデータを使用しました。このアルゴリズムは、津波が形成される際の電離層の帯電粒子の密度の変化を測定します。

データは2D画像に変換され、AIによって津波に関連する特徴が識別されました。

AIは、少なくとも70%の地上局が衛星からのデータを受信できなかった電離圏の擾乱パターンを除去した後、90%以上の検出性能を達成しました。ニューサイエンティストからの記事を見る-有料購読が必要な場合があります

要約の著作権は2023年、SmithBucklin、ワシントンD.C.、アメリカに帰属します

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

コンピュータサイエンス

「新しいコードが量子コンピューティングを10倍効率化する可能性」

量子コンピューティングはまだ非常に難しいですしかし、強力な誤り訂正コードの出現は、この課題が多くの人々が恐れていたよ...

機械学習

医療画像AIがより簡単になりました:NVIDIAがMONAIをホステッドクラウドサービスとして提供

本日、NVIDIAは医療画像AIのためのクラウドサービスを立ち上げました。これにより、完全に管理され、クラウドベースのAPIを通...

データサイエンス

『Amazon SageMaker を使用して、Talent.com の ETL データ処理を効率化する』

この投稿では、Talent.comでの求人推薦モデルのトレーニングと展開のために開発したETLパイプラインについて説明します当社の...

機械学習

このAI論文では、「Lightning Cat」というスマート契約の脆弱性検出ツールを紹介していますこれは、深層学習をベースにしたツールです

スマートコントラクトは、分散型アプリケーションの開発においてブロックチェーン技術で重要な役割を果たしています。スマー...

AI研究

マイクロソフトリサーチがAIコンパイラの「ヘビーメタルカルテット」である「Rammer」「Roller」「Welder」「Grinder」をリリースしました

人工知能(AI)モデルとハードウェアアクセラレータの進化により、コンパイラには独自の課題が生じています。これらの課題は...

機械学習

「GoogleのDeblur AI:画像を鮮明にする」

私たちの絶え間なく進化するデジタル時代において、写真を通じて瞬間を捉え、共有することが私たちの生活の一部となっている...