AIモデルが高解像度のコンピュータビジョンを高速化します

AIモデルが高速で高解像度のコンピュータビジョンを実現します

このシステムは、ビデオストリーミングの画質を向上させることができたり、自律型車両がリアルタイムで道路の危険を識別するのに役立つ可能性があります。

高解像度のコンピュータビジョンの機械学習モデルは、自律走行や医療画像セグメンテーションなど、計算量の多いビジョンアプリケーションをエッジデバイス上で実現することができます。写真は、自律走行技術のアーティストによる解釈です。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

PyTorchを使用して畳み込みニューラルネットワークを構築する

このブログ投稿では、PyTorchを使用して画像分類のための畳み込みニューラルネットワークを構築するチュートリアルを提供して...

データサイエンス

「データウェアハウジング入門ガイド」

データウェアハウスの主要なコンポーネント、アーキテクチャ、ベストプラクティス、課題、利点を探求してください

AIニュース

この人工知能に焦点を当てたチップは効率を再定義します:処理とメモリを統合することでエネルギーの節約を倍増させる

データ中心のローカルインテリジェンスの需要が高まる中、デバイスが自律的にデータを解析できるようにするという課題がます...

機械学習

線形回帰の理論的な深堀り

多くのデータサイエンス志望のブロガーが行うことがあります 線形回帰に関する入門的な記事を書くことですこれは、この分野に...

AIニュース

Amazon SageMakerでTritonを使用してMLモデルをホストする:ONNXモデル

ONNX(Open Neural Network Exchange)は、多くのプロバイダーによって広くサポートされている深層学習モデルを表現するため...

AI研究

マサチューセッツ州ローウェル大学の研究者たちは、高ランクのトレーニングに低ランクの更新を使用する新しいAIメソッドであるReLoRAを提案しています

以下は、HTMLのコードを日本語に翻訳したものです(HTMLコードはそのまま表示されます): 過去10年間、より大きなパラメータ...