コールセンターにおけるAIソフトウェアが顧客サービスを革命化します

AIソフトウェアがコールセンターの顧客サービスを革新する

人工知能(AI)技術の急速な進歩により、チャットボットの導入を特に受けた顧客サービスとサポートに変革的なシフトがもたらされました。通信、保険、銀行、公共事業、政府機関など、さまざまな業界が、今後数年間でAIによるソリューションの導入を進める予定です。この次世代の自動化されたサポートシステムの提唱者たちは、比類のない利益を想像していますが、その他の人々は潜在的な落とし穴について懸念を表明しています。この記事では、コールセンターにおけるAIの影響について掘り下げます。それは、優れた顧客体験を提供するか、既存の課題を悪化させるかを検討します。

また読む:ChatGPTは、医師よりも質の高い医療アドバイスを提供する

AIによるコールセンターの台頭

人工知能は、近年著しい進歩を遂げ、専門家たちは、顧客サービス業務での広範な採用を予想しています。従来のチャットボットに頼るのではなく、新しい世代のAI駆動システムは、驚異的な能力を示します。彼らは、個々の顧客のニーズに合わせたカスタマイズされた応答を提供するために、継続的に学習し、適応し、膨大な情報を活用することができます。

また読む:Sanctuary AIのPhoenixロボットとTeslaの最新ローンチ、Optimus!に会いましょう!

自動化サポートの二重性

高度なAIに基づく顧客サービスの見通しは有望ですが、その実装と潜在的な欠点については、正当な懸念があります。十分な準備なしに採用に急いだ場合、顧客の体験が失望する可能性があります。自動ループは、人道的支援にアクセスできず、困り果てた顧客が自分自身を取り囲んでいるという現実的な懸念があります。また、意図しない冒涜的または不正確なAIの応答も検討する必要があります。

また読む:ChatGPTがラジオホストに対して偽の告発を生成するため、OpenAIが名誉毀損訴訟に直面しています

コールセンターの労働者への影響

コールセンターにおけるAIの導入は、今後10年間で何百万ものコールセンター労働者の大量失業を引き起こすことが予想されています。短期間では、状況は同じくらい厳しいようです。労働者は、クエリの処理に関する提案を提供し、パフォーマンスについて報告する機械による常時監視の見通しに直面しています。この増加した監視は、彼らの仕事の既に厳しい性質を強化し、より高いストレスレベルを引き起こす可能性があります。

また読む:人工知能の急速な上昇は、仕事の喪失を意味します:テックセクターで何千人もの人々が影響を受けています

コスト削減と生産性向上のバランス

潜在的な欠点にもかかわらず、ビジネスにとって生成的AIの魅力は否定できません。最近のマッキンゼーの報告によると、顧客サービス機能の改善だけでも、世界中で4,040億ドルの驚異的な利益が得られる可能性があります。これらの潜在的な節約と生産性の向上は、組織がAI駆動のソリューションをさらに探求することを推進するでしょう。したがって、彼らはコスト効率と顧客満足度のバランスを慎重に維持する必要があります。

また読む:生成的AIは年間4.4兆ドルの貢献ができる:マッキンゼー

消費者のAIへの信頼

OpenAIのChatGPT、GoogleのBard、そしてMicrosoftのAI駆動のBing検索エンジンなどのAIチャットボットの出現は、一般大衆を魅了し、その応用についての多くの議論を引き起こしました。しかし、消費者の感情は分かれています。最近の調査によると、74%の回答者が、AIに基づく顧客サービスはライブ代表者とのやり取りよりも悪い体験を提供すると考えています。同様に、63%の人々が人間のエージェントをAIよりも信頼し、わずか6%がチャットボットに傾いています。さらに、カナダ人の大多数(63%)は、パンデミック中にチャットボットを雇用した企業が、ポストパンデミック時にライブ代表者に戻ることを期待しており、そうしない企業には否定的な影響があります。

私たちの意見

人工知能をコールセンターの運用に統合することは、機会と課題の両方を示します。潜在的な利益は、改善された顧客体験や巨大なコスト削減を含みますが、サービスの質やコールセンターの従業員への影響については正当な懸念があります。人間のタッチとAI駆動のサポートの適切なバランスを打つことは、AI時代において顧客サービスを最適化しようとする組織にとって重要です。コールセンターの景色がこの変革的なシフトを経験するにつれ、効率的で共感的な顧客体験の提供を優先し、AI駆動のテクノロジーの利点を受け入れることが不可欠です。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AI研究

新しいAI論文で、CMUとGoogleの研究者が言語モデルの出力を再定義します:応答を一時停止トークンで遅延させることが、QAや推論のタスクでのパフォーマンスを向上させる方法

トークンは、トランスフォーマーに基づく因果言語モデルを使用して、高速に生成されます。このモデルは、K個の前のトークンを...

機械学習

このAIニュースレターは、あなたが必要な全てです #55

今週は、ついにOpen AIのCode Interpreterをテストする機会を得て、とても興奮しましたこれは、ChatGPT内のGPT-4の新しい機能...

AIニュース

Amazon Lex、Langchain、およびSageMaker Jumpstartを使用した会話型エクスペリエンスにおける生成AIの探求:イントロダクション

現代の快速な世界では、顧客はビジネスから迅速かつ効率的なサービスを期待していますただし、問い合わせの量が対応する人的...

AIニュース

ベストAI画像生成器(2023年7月)

多くのビジネスの景色が人工知能によって変わりつつあり、画像作成もその一つです。 AI画像生成器は、テキストをグラフィック...

機械学習

コンピューティングの未来を展望する

MITの学生たちは、コンピューティングの進歩が社会をどのように変革するかについてのアイデア、願望、ビジョンを、社会的・倫...

AIニュース

光を見る

光ベースのコンピューティングに光を当てる