AIコーディングツールが登場しました:製品エンジニアリングチームがそれらをどのように活用するか

AIコーディングツールの活用方法

Midjourneyを使用した著者によるイメージ

生成AIが製品エンジニアリングチームに与える影響-パート2

これは、開発者を対象とした生成AI生産性ツール(Github Copilot、ChatGPT、Amazon CodeWhispererなど)が、製品エンジニアリングチーム全体の構造にどのような影響を与えるかを調査する6部作の第2部です。

第1部では以下を探求しました:

  1. 製品エンジニアリングの状況と、生成AIツールの台頭によりチームがより少ない人間のエンジニアを必要とする可能性。
  2. テックチームにおける従来の5:1の比率:業界全体で1人のプロダクトマネージャーに対して約5人のエンジニアが一般的であること。
  3. 製品マネージャーとエンジニアの役割、現在の製品開発プロセスにおけるこれらの役割がAIの進歩とともにどのように変化するか。
  4. 過去の研究がAIによる影響が最も少ない職業についての誤った予測を示しており、特にテック業界やクリエイティブ業界においてLLMsがこれらの予測を覆していること。

AIコーディングツールの爆発

自動化はソフトウェアエンジニアリングの一部として存在してきた歴史があります。エリック・レイモンドの2003年の画期的なエッセイ「The Art of Unix Programming」では、ソフトウェアエンジニアのための17のデザインルール、手でプログラムを書くことを避けるための「生成の原則」について言及しています。

レイモンドのアドバイスは、それが公開されてから20年経った今でもまだ有効です:

「人間は細部について注意を払うことが notoriously bad です。そのため、プログラムの手動ハックは遅延とエラーの豊富な源です。あなたのプログラムの仕様ができるだけシンプルで抽象化されているほど、人間の設計者がそれを正しく理解している可能性が高くなります。生成されたコード(すべてのレベルで)は、手でハックしたものよりもほとんど常に安価で信頼性があります。」

レイモンドがこれらの言葉を書いてから、私たちは自動化されたテストツール、リンター(私たちが書いたコードを自動的にチェックするツール)、開発環境の自動補完(コード用のスペルチェックのようなもの)、ReactやDjangoのようなフレームワーク(自動化された…

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

人工知能

「aiOlaのCEO兼共同創設者、アミール・ハラマティによるインタビューシリーズ」

アミール・ハラマティは、aiOlaのCEO兼共同創業者であり、スピーチを作業可能にし、どこでも完全な正確さで業界固有のプロセ...

人工知能

「パクストンAIの共同創業者兼CEO、タングイ・シャウ - インタビューシリーズ」

タングイ・ショウは、Paxton AIの共同創設者兼CEOであり、法的研究と起草の負担を軽減するためにGenerative AIを使用するプラ...

機械学習

もし芸術が私たちの人間性を表現する方法であるなら、人工知能はどこに適合するのでしょうか?

MITのポストドクターであるジヴ・エプスタイン氏(SM '19、PhD '23)は、芸術やその他のメディアを作成するために生成的AIを...

人工知能

「サティスファイラボのCEO兼共同創設者、ドニー・ホワイト- インタビューシリーズ」

2016年に設立されたSatisfi Labsは、会話型AI企業のリーディングカンパニーです早期の成功は、ニューヨーク・メッツ、メイシ...

人工知能

「Zenの共同創設者兼CTO、イオン・アレクサンドル・セカラ氏によるインタビューシリーズ」

創業者兼CTOであるIon-Alexandru Secaraは、Zen(PostureHealth Inc.)の開発を牽引しており、画期的な姿勢矯正ソフトウェア...

人工知能

ベイリー・カクスマー、ウォータールー大学の博士課程候補 - インタビューシリーズ

カツマー・ベイリーは、ウォータールー大学のコンピュータ科学学部の博士課程の候補者であり、アルバータ大学の新入教員です...