新しいAI研究がMONAI Generative Modelsを紹介:研究者や開発者が簡単に生成モデルをトレーニング、評価、展開できるオープンソースプラットフォーム
AIの新しい研究で、MONAI Generative Modelsが紹介されました研究者や開発者はこのオープンソースプラットフォームを使って簡単に生成モデルをトレーニング、評価、展開することができます
最新の生成型人工知能の進歩により、医療画像を含む複数の分野で新たな進展がありました。これらの生成モデルは、異常検出、画像対画像変換、ノイズ除去、磁気共鳴画像(MRI)再構築など、様々な用途において大きな可能性を持っています。しかし、これらのモデルは複雑であるため、実践化や再現性には困難が伴います。この複雑さは進捗を遅らせ、ユーザーの参入障壁を作り、確立された手法と比較して新しいアプローチの評価を妨げる可能性があります。
生成モデルの構築と展開を簡単かつ標準化するために、研究者チームはMONAI Generative Modelsというオープンソースプラットフォームを作成しました。このグループには、キングスカレッジロンドン、国立精神衛生研究所、エジンバラ大学、バーゼル大学、韓国科学技術院、NVIDIA、スタンフォード大学、マウントサイナイ医学校、ロンドン大学などの研究者が参加しました。
技術の有効性を示すために、分布外検出から画像変換、スーパーレゾリューションまで、さまざまな医療画像関連のトピックをカバーした5つの研究が説明されています。2Dおよび3Dのシナリオでさまざまなモダリティと解剖学的領域を使用してプラットフォームの適応性が示され、医療画像のさらなる発展のための新しいツールとしての潜在能力が示されています。5つの実験は以下の通りです:
- このAI研究では、全身ポーズ推定のための新しい2段階ポーズ蒸留を紹介しています
- このAI研究は、質問応答の実行能力において、指示に従うモデルの正確さと忠実さを評価します
- ソルボンヌ大学の研究者は、画像、ビデオ、音声、言語のタスクに対する統合AIモデル「UnIVAL」を紹介しました
- 提案されたモデルは新しい状況に簡単に適応でき、さまざまな状況での徹底的な比較を可能にし、初期の対象範囲を広げることができます。この品質を示すために、研究者はパッケージ内の最先端のモデルの1つである潜在拡散モデルとその能力を評価しました。このモデルは、体型や活動タイプが異なるデータセットから新しい情報を生成する能力を持っています。
- 潜在的な生成モデルには、圧縮モデルと生成モデルの2つの基本的な部分が含まれており、チームはこれらが非常に柔軟であることを示しています。
- このシステムを使用すると、さまざまな医療画像アプリケーションで生成モデルを使用することが容易になります。チームは、通常範囲外の3D画像データの検出に適用できることを示しました。
- Stable Diffusion 2.0 Upscalerメソッドを使用して、生成モデルのスーパーレゾリューションの可能性も調査しました。調査結果は、特に3Dモデルにおいて、生成モデルがスーパーレゾリューションアプリケーションに有用であることを示しています。
- チームはまた、モデルがスーパーレゾリューション写真とどのように機能するかをテストしました。これにより、拡大されたテストセットの写真とそれに対応する正解画像を比較しました。これらの結果は、モデルの優れたスーパーレゾリューション能力を確認し、画像の明瞭さ向上における効率性を証明しています。
将来的には、研究者はMRI再構築などの他のアプリケーションのサポートを向上させ、モデル比較を容易にするためにより最新のモデルを組み込む予定です。これらの進展により、医療生成モデルおよびその応用分野はさらなる発展を続けるでしょう。
We will continue to update VoAGI; if you have any questions or suggestions, please contact us!
Was this article helpful?
93 out of 132 found this helpful
Related articles
- 「医療分野における生成型AI」
- 「スタンフォード研究者は、直接の監督なしでメタ強化学習エージェントにおける単純な言語スキルの出現を探求する:カスタマイズされたマルチタスク環境におけるブレイクスルーを解明する」
- 『CMUからの新しいAI研究は、適切な言語モデルに対して物議を醸す行動を生成させるための、簡単で効果的な攻撃手法を提案しています』
- 「拡散モデルの助けを借りて、画像間の補間を組み込むためのAI研究」についてのAI研究
- 自動化された欺瞞検出:東京大学の研究者が機械学習を通じて表情と脈拍を利用して欺瞞を暴く
- MITの研究者が新しいAIツール「PhotoGuard」を導入し、不正な画像の操作を防止すると発表しました
- 「AIIMSデリーが医療のためのロボット技術、AI、およびドローンの研究を開始」