完全に説明されたAdaBoostアンサンブルテクニックのPythonの例

『Pythonで完全に説明されたAdaBoostアンサンブルテクニックの例』

機械学習におけるブースティングアンサンブルアルゴリズム

Alex Chumakによる写真、Unsplashから取得

はじめに

アンサンブル技術:アンサンブルは、弱いモデルのコレクションまたはグループであり、これらが強力な機械学習モデルになる技術です。

弱学習器またはベースモデル:これらは、アンサンブル内の機械学習ベースモデルのコレクションで使用される異なるアルゴリズムです。これらのモデルには、ロジスティック回帰、SVM、決定木、線形回帰、ランダムフォレストなどが含まれます。

アンサンブル技術では、予測分析からバラエティを得るため、モデルにバリエーションを加える必要があります。

このバリエーションは、同じベースモデルを保持し、ベースモデルに与えられる入力データを変更することで行うことができます。2番目の方法は、異なるベースモデルを持ち、同じ入力データを持つことで、モデルが異なるデータでトレーニングできるようにすることです。

  • 分類の場合:予測はすべての弱学習器の多数派カウントに基づきます。
  • 回帰の場合:予測はすべてのベースモデルの予測の平均に基づきます。

アンサンブル技術の種類:

  1. 投票
  2. バギング:
  • ランダムフォレスト

3. ブースティング:

  • Ada-ブースティング
  • 勾配ブースティング
  • XGBoost

4. スタッキング

Ada-ブースティングは、ブースティングアルゴリズムのカテゴリに属しています。最近の事例では、ブースティング技術の使用が広まっており、高い性能率と過学習のリスクの低さが特徴です。

Adaboostのベース学習器は、各ベースモデルごとに誤差を最小化することでモデルの重みを順次ブースティングしています。

ベース学習器のタイプ:

  1. 同質:トレーニングで同じベースモデルを使用する
  2. 異質:トレーニングで異なるベースモデルを使用する

アンサンブル方法は、過学習の問題を避けるために、低バイアスかつ低分散を保つようにします。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AIテクノロジー

宇宙探索と最先端技術

「宇宙探査の絶え間なく進化する領域を探索し、その豊かな歴史、驚くべきマイルストーン、現在のトレンド、技術の影響、課題...

AIテクノロジー

「マーケティングにおける人工知能の短いガイド」

「デジタルマーケティングにおける人工知能の役割や、ビジネスにおける他のAIツールがデータに基づく意思決定に与える影響に...

AIテクノロジー

アルトコインへの投資:暗号市場の包括的ガイド

アルトコインとは、ビットコインの後に登場した他の暗号通貨のことですこれらのデジタル通貨は、分散型ブロックチェーン技術...

AIテクノロジー

2023年の最も人気のあるプロフェッショナルコース

専門的なコースを通じて新しいスキルと知識を習得することの重要性は前例のないレベルに達しています詳しくはこちらをご覧く...

AIテクノロジー

テックとマインドのバランス:メンタルヘルスのためのAI

「人工知能と精神健康の交差点を探索し、テクノロジー主導の世界における潜在的な利点と課題を明らかにする」

データサイエンス

テキスト読み上げ(TTS)とAIにおける倫理的考慮事項:データセキュリティにスポットライトを当てる

人工知能(AI)および自然言語処理(NLP)技術の急速な進歩により、テキスト音声変換(TTS)システムなどの非常に洗練された...