完全に説明されたAdaBoostアンサンブルテクニックのPythonの例

『Pythonで完全に説明されたAdaBoostアンサンブルテクニックの例』

機械学習におけるブースティングアンサンブルアルゴリズム

Alex Chumakによる写真、Unsplashから取得

はじめに

アンサンブル技術:アンサンブルは、弱いモデルのコレクションまたはグループであり、これらが強力な機械学習モデルになる技術です。

弱学習器またはベースモデル:これらは、アンサンブル内の機械学習ベースモデルのコレクションで使用される異なるアルゴリズムです。これらのモデルには、ロジスティック回帰、SVM、決定木、線形回帰、ランダムフォレストなどが含まれます。

アンサンブル技術では、予測分析からバラエティを得るため、モデルにバリエーションを加える必要があります。

このバリエーションは、同じベースモデルを保持し、ベースモデルに与えられる入力データを変更することで行うことができます。2番目の方法は、異なるベースモデルを持ち、同じ入力データを持つことで、モデルが異なるデータでトレーニングできるようにすることです。

  • 分類の場合:予測はすべての弱学習器の多数派カウントに基づきます。
  • 回帰の場合:予測はすべてのベースモデルの予測の平均に基づきます。

アンサンブル技術の種類:

  1. 投票
  2. バギング:
  • ランダムフォレスト

3. ブースティング:

  • Ada-ブースティング
  • 勾配ブースティング
  • XGBoost

4. スタッキング

Ada-ブースティングは、ブースティングアルゴリズムのカテゴリに属しています。最近の事例では、ブースティング技術の使用が広まっており、高い性能率と過学習のリスクの低さが特徴です。

Adaboostのベース学習器は、各ベースモデルごとに誤差を最小化することでモデルの重みを順次ブースティングしています。

ベース学習器のタイプ:

  1. 同質:トレーニングで同じベースモデルを使用する
  2. 異質:トレーニングで異なるベースモデルを使用する

アンサンブル方法は、過学習の問題を避けるために、低バイアスかつ低分散を保つようにします。

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

データサイエンス

テキスト読み上げ(TTS)とAIにおける倫理的考慮事項:データセキュリティにスポットライトを当てる

人工知能(AI)および自然言語処理(NLP)技術の急速な進歩により、テキスト音声変換(TTS)システムなどの非常に洗練された...

AIテクノロジー

「リターンオファーを得る方法」 (リターンオファーをえるほうほう)

学生の視点から見ると、インターンシップの主な目標は、来年の夏にインターンとしてまたは正社員として戻ってくるために、そ...

AIテクノロジー

チャットアプリ開発の主要な柱

このデジタル時代において、チャットアプリの開発は私たちのコミュニケーションの方法を変えてきましたスマートフォンの登場...

AIテクノロジー

AI(人工知能)の謎を解明:フォローすべきブロガーやライター

この記事では、注目すべき影響力のあるAIインフルエンサーや研究者、執筆者を紹介しています彼らの経歴、業績、AIの進歩に関...

AIテクノロジー

ベスト5のRコース(2024年)

私たちは最高のRコースを見ていきますこれらのコースによって、Rプログラミングの経験を積むために必要なすべてのスキルを学...

AIテクノロジー

ベスト5のPower BIコース(2024年)

これらのコースは、あらゆるレベルの学習者がPower BIのフルポテンシャルを引き出すための構造化されたパスを提供しています