「効率的な変数選択のための新しいアルゴリズムが提案されました」

A new algorithm for efficient variable selection has been proposed.

.fav_bar { float:left; border:1px solid #a7b1b5; margin-top:10px; margin-bottom:20px; } .fav_bar span.fav_bar-label { text-align:center; padding:8px 0px 0px 0px; float:left; margin-left:-1px; border-right:1px dotted #a7b1b5; border-left:1px solid #a7b1b5; display:block; width:69px; height:24px; color:#6e7476; font-weight:bold; font-size:12px; text-transform:uppercase; font-family:Arial, Helvetica, sans-serif; } .fav_bar a, #plus-one { float:left; border-right:1px dotted #a7b1b5; display:block; width:36px; height:32px; text-indent:-9999px; } .fav_bar a.fav_de { background: url(../images/icons/de.gif) no-repeat 0 0 #fff } .fav_bar a.fav_de:hover { background: url(../images/icons/de.gif) no-repeat 0 0 #e6e9ea } .fav_bar a.fav_acm_digital { background:url(‘../images/icons/acm_digital_library.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_acm_digital:hover { background:url(‘../images/icons/acm_digital_library.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.fav_pdf { background:url(‘../images/icons/pdf.gif’) no-repeat 0px 0px #FFF; } .fav_bar a.fav_pdf:hover { background:url(‘../images/icons/pdf.gif’) no-repeat 0px 0px #e6e9ea; } .fav_bar a.fav_more .at-icon-wrapper{ height: 33px !important ; width: 35px !important; padding: 0 !important; border-right: none !important; } .a2a_kit { line-height: 24px !important; width: unset !important; height: unset !important; padding: 0 !important; border-right: unset !important; border-left: unset !important; } .fav_bar .a2a_kit a .a2a_svg { margin-left: 7px; margin-top: 4px; padding: unset !important; }

アルゴリズムは6つの重みベクトルを組み合わせ、しきい値探索戦略を使用してスペクトルから有用な情報を抽出するための最適な重みベクトルを探索します。¶ クレジット: 中国科学院合肥物理科学研究所

中国科学院合肥物理科学研究所の研究者は、化学計量学の応用における変数選択アルゴリズムを開発しました。

マルチウェイトベクトル最適選択およびブートストラップソフト縮小(MWO-BOSS)アルゴリズムは、スペクトル予測モデルの開発時に最適な波長の組み合わせを特定するプロセスをより効率的にすることを目指しています。

MWO-BOSSは、選択比率、射影における変数の重要度、周波数ベクトル、残差分散ベクトルの逆数、回帰係数、および多変量相関の有意性の6つの重みベクトルから最適な重みベクトルを選択し、しきい値探索戦略を用いてスペクトルから有益な情報を抽出します。

公開されているデータセットにおけるテストでは、このアルゴリズムは変数を効率的に選択し、モデルの予測能力を向上させることに成功しました。中国科学院の記事を参照してください。

抄録の著作権は2023年のSmithBucklin、ワシントンD.C.、アメリカにあります

We will continue to update VoAGI; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

機械学習

『Qwen Large Language Models(LLMs)Seriesについて知っておくべきすべて』

大型言語モデル(LLM)は、登場以来、人工知能(AI)の領域を大きく変えました。これらのモデルは、厳しい推論や問題解決の問...

AIニュース

「Googleのアルゴリズムによって、FIDO暗号化は量子コンピュータから安全になります」

GoogleとスイスのETH Zurichの研究者によって開発されたポスト量子暗号(PQC)アルゴリズムは、FIDO2セキュリティキーに対し...

機械学習

「Lineが『japanese-large-lm』をオープンソース化:36億パラメータを持つ日本語言語モデル」

2020年11月以来、LINEは日本語に特化した先進的な大規模言語モデルの研究開発に取り組んできました。この旅の重要なマイルス...

データサイエンス

「ジョンズホプキンスのこの論文は、時間と望遠鏡を超えて宇宙の発見の確率的カタログマッチングを加速させるデータサイエンスの役割を強調しています」

宇宙研究において、同じ星や銀河が異なる天空調査で見つかるかどうかという問題があります。現在の望遠鏡は、さまざまな種類...

AIテクノロジー

6つのGenAIポッドキャスト、聴くべきです

はじめに 急速に進化する 人工知能(AI)の世界において、生成AI(GenAI)の領域は魅力的でダイナミックな分野として注目され...

機械学習

「機械学習を使ってイタリアのファンタジーフットボールで勝利した方法」

「機械工学の専門家としてプログラミングとコンピュータサイエンスに興味を持っていた私は、数年前に機械学習と人工知能の世...