Learn more about Search Results torch.topk

「コスト効率の高い高性能 AI 推論用の Amazon EC2 DL2q インスタンスが一般提供開始されました」

Qualcomm AIのA.K Royさんによるゲスト記事ですAmazon Elastic Compute Cloud(Amazon EC2)DL2qインスタンスは、Qualcomm AI 100 Standardアクセラレータによってパワーアップされ、クラウド上で効率的に深層学習(DL)タスクを展開するために使用することができますDLタスクのパフォーマンスや精度を開発し、検証するためにも利用できます

ビッグデータの力を解放する:グラフ学習の魅力的な世界

大企業は膨大な量のデータを生成し蓄積しています例えば、このデータの90%は最近の数年間に作成されたものですしかし、このうち73%のデータはまだ利用されていません[1]しかし、ご存知のように…

CLIPSegによるゼロショット画像セグメンテーション

このガイドでは、🤗 transformersを使用して、ゼロショットの画像セグメンテーションモデルであるCLIPSegを使用する方法を紹介します。CLIPSegは、ロボットの知覚、画像補完など、さまざまなタスクに使用できるラフなセグメンテーションマスクを作成します。より正確なセグメンテーションマスクが必要な場合は、Segments.aiでCLIPSegの結果を改善する方法も紹介します。 画像セグメンテーションは、コンピュータビジョンの分野でよく知られたタスクです。これにより、コンピュータは画像内の物体を知るだけでなく(分類)、画像内の物体の位置を知ることもできます(検出)、さらには物体の輪郭も知ることができます。物体の輪郭を知ることは、ロボット工学や自動運転などの分野では重要です。たとえば、ロボットは物体の形状を正しく把握するために、その形状を知る必要があります。セグメンテーションは、画像補完と組み合わせることもでき、ユーザーが画像のどの部分を置き換えたいかを説明することができます。 ほとんどの画像セグメンテーションモデルの制限の1つは、固定されたカテゴリのリストでのみ機能するということです。たとえば、オレンジでトレーニングされたセグメンテーションモデルを使用して、リンゴをセグメント化することはできません。セグメンテーションモデルに追加のカテゴリを教えるには、新しいカテゴリのデータをラベル付けし、新しいモデルをトレーニングする必要があります。これは費用と時間がかかる場合があります。しかし、さらなるトレーニングなしにほとんどどのような種類のオブジェクトでもセグメント化できるモデルがあったらどうでしょうか?それがCLIPSeg、ゼロショットのセグメンテーションモデルが達成するものです。 現時点では、CLIPSegにはまだ制限があります。たとえば、モデルは352 x 352ピクセルの画像を使用するため、出力はかなり低解像度です。したがって、モダンなカメラの画像を使用すると、ピクセルパーフェクトな結果を期待することはできません。より正確なセグメンテーションを必要とする場合、前のブログ記事で示したように、最新のセグメンテーションモデルを微調整することができます。その場合、CLIPSegを使用してラフなラベルを生成し、Segments.aiなどのラベリングツールでそれらを調整することができます。それについて説明する前に、まずCLIPSegの動作を見てみましょう。 CLIP: CLIPSegの背後にある魔法のモデル CLIP(Contrastive Language–Image Pre-training)は、OpenAIが2021年に開発したモデルです。CLIPに画像またはテキストの一部を与えると、CLIPは入力の抽象的な表現を出力します。この抽象的な表現、または埋め込みとも呼ばれるものは、実際にはベクトル(数値のリスト)です。このベクトルは、高次元空間のポイントと考えることができます。CLIPは、似たような画像とテキストの表現も似たようにするようにトレーニングされています。つまり、画像とそれに合致するテキストの説明を入力すると、画像とテキストの表現が似ている(つまり、高次元のポイントが近くにある)ことになります。 最初はあまり役に立たないように思えるかもしれませんが、実際には非常に強力です。例えば、CLIPを使用して訓練されたことがないタスクで画像を分類する方法を簡単に見てみましょう。画像を分類するには、画像と選択肢となる異なるカテゴリをCLIPに入力します(例えば、画像と「りんご」、「オレンジ」などの単語を入力します)。CLIPは、画像と各カテゴリの埋め込みを返します。今、画像の埋め込みに最も近いカテゴリの埋め込みを確認するだけです。これで完了です!まるで魔法のようですね。 CLIPを使用した画像分類の例(出典)。 さらに、CLIPは分類だけでなく、画像検索(これが分類と似ていることがわかりますか?)、テキストから画像への変換モデル(DALL-E 2はCLIPで動作します)、物体検出(OWL-ViT)などにも使用できます。そして、私たちにとって最も重要なのは、画像セグメンテーションです。これでCLIPが機械学習において本当に画期的なものである理由がお分かりいただけるでしょう。 CLIPが非常にうまく機能する理由は、モデルがテキストのキャプション付きの膨大なデータセットでトレーニングされたからです。そのデータセットには、インターネットから取得した4億枚の画像テキストペアが含まれています。これらの画像にはさまざまなオブジェクトや概念が含まれており、CLIPはそれぞれのオブジェクトに対して表現を生成するのに優れています。 CLIPSeg: CLIPによる画像セグメンテーション CLIPSegは、CLIPの表現を使用して画像セグメンテーションマスクを作成するモデルです。Timo LüddeckeさんとAlexander Eckerさんによって公開されました。彼らは、CLIPモデルを凍結したまま、TransformerベースのデコーダをCLIPモデルの上にトレーニングすることで、ゼロショット画像セグメンテーションを達成しました。デコーダは、画像のCLIP表現とセグメンテーションしたい対象のCLIP表現を入力として受け取り、これらの2つの入力を使用して、CLIPSegデコーダは2値のセグメンテーションマスクを作成します。より詳しく言うと、デコーダはセグメンテーションしたい画像の最終的なCLIP表現だけでなく、CLIPのいくつかのレイヤーの出力も使用します。 ソース デコーダは、PhraseCutデータセットでトレーニングされています。このデータセットには、340,000以上のフレーズと対応する画像セグメンテーションマスクが含まれています。著者たちはまた、データセットのサイズを拡大するためにさまざまな拡張方法も試みました。ここでの目標は、データセットに存在するカテゴリだけでなく、未知のカテゴリもセグメンテーションできるようにすることです。実験の結果、デコーダは未知のカテゴリにも対応できることが示されています。…

はい、トランスフォーマーは時系列予測に効果的です(+オートフォーマー)

イントロダクション 数ヶ月前、AAAI 2021のベストペーパーアワードを受賞したTime Series TransformerであるInformerモデル(Zhou, Haoyiら、2021)を紹介しました。また、Informerを使用した多変量確率予測の例も提供しました。この記事では、「Transformerは時系列予測に効果的か?」(AAAI 2023)という疑問について議論します。見ていくとわかりますが、それらは効果的です。 まず、Transformerは確かに時系列予測に効果的であることを経験的に証明します。私たちの比較では、線形モデルであるDLinearが主張されるほど優れていないことが示されています。線形モデルと同じ設定の同等の大きさのモデルと比較した場合、Transformerベースのモデルは私たちが考慮するテストセットのメトリックでより優れた性能を発揮します。その後、Informerモデルの後にNeurIPS 2021で発表されたAutoformerモデル(Wu, Haixuら、2021)を紹介します。Autoformerモデルは現在🤗 Transformersで利用できます。最後に、Autoformerの分解層を使用するシンプルなフィードフォワードネットワークであるDLinearモデルについて説明します。DLinearモデルは、「Transformerは時系列予測に効果的か?」という論文で初めて紹介され、Transformerベースのモデルを時系列予測で上回ると主張されています。 さあ、始めましょう! ベンチマーキング – Transformers vs. DLinear 最近AAAI 2023で発表された「Transformerは時系列予測に効果的か?」という論文では、著者らはTransformerが時系列予測に効果的ではないと主張しています。彼らは、DLinearと呼ばれるシンプルな線形モデルとTransformerベースのモデルを比較しています。DLinearモデルはAutoformerモデルの分解層を使用しており、後ほどこの記事で紹介します。著者らは、DLinearモデルがTransformerベースのモデルを時系列予測で上回ると主張しています。本当にそうなのでしょうか?さあ、確かめましょう。 上記の表は、論文で使用された3つのデータセットにおけるAutoformerモデルとDLinearモデルの比較結果を示しています。結果からわかるように、Autoformerモデルは3つのデータセットすべてでDLinearモデルを上回っています。 次に、上記の表のTrafficデータセットを使用してAutoformerモデルとDLinearモデルを比較し、得られた結果の説明を提供します。 要約: 簡単な線形モデルは一部の場合において有利ですが、ユニバリエートの設定では変数を組み込む能力がTransformerのようなより複雑なモデルに比べてありません。 Autoformer…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us