Learn more about Search Results npm
- You may be interested
- ChatGPTでリードマグネットのアイデアをブ...
- 「アルトマンのスティーブ・ジョブズモー...
- ジェンAIに関するトップ10の研究論文
- 「3年以内に労働力の40%がAIの影響を受け...
- 「ディープラーニングを用いたナノアレイ...
- 「H3とPlotlyを使用してヘキサゴンマップ...
- 「ボトルネックアダプタを使用した効率的...
- 「挑戦的に、マイクロソフトの研究者はGPT...
- 「Amazon Bedrockへのプライベートアクセ...
- 「新しい取り組みによる輸送とエネルギー...
- 「Googleのおかげで、ロボットにとっての...
- 「二塔モデルの限界を押し上げる」
- 「Neosyncをご紹介します:開発環境やテス...
- 「人工知能(AI)におけるアナログコンピ...
- 異なる暗号通貨間のブリッジ
「最初のAIエージェントを開発する:Deep Q-Learning」
2. 全体像 3. 環境 初期の基礎 4. エージェントの実装 ニューラルアーキテクチャとポリシー 5. 環境への影響 仕上げ 6. 経験から学ぶ...
『LLM360をご紹介します:最初の完全オープンソースで透明な大規模言語モデル(LLM)』
“`html オープンソースの大規模言語モデル(LLM)であるLLaMA、Falcon、Mistralなどは、AIのプロフェッショナルや学者向けにさまざまな選択肢を提供しています。しかし、これらのLLMの大部分は、エンドモデルの重みや推論スクリプトなどの一部のコンポーネントだけが利用可能であり、技術的なドキュメントでは、一般的な設計の側面や基本的なメトリックに焦点を絞った内容が多いです。このアプローチでは、LLMのトレーニング手法の明確性が低下し、チームがトレーニング手順のさまざまな側面を継続的に解明するための努力が重複してしまいます。 Petuum、MBZUAI、USC、CMU、UIUC、UCSDの研究者チームが、LLM360を導入しました。これは、エンドツーエンドのLLMトレーニングプロセスを透明で再現可能にすることにより、オープンかつ協力的なAIの研究をサポートするイニシアチブです。LLM360は、トレーニングコードとデータ、モデルのチェックポイント、中間結果などのすべてをコミュニティに提供することを主張する、完全なオープンソースのLLMです。 LLM360に最も近いプロジェクトはPythiaであり、LLMの完全な再現性を目指しています。GPT-JやGPT-NeoXなどのEleutherAIモデルは、トレーニングコード、データセット、中間モデルのチェックポイントと共にリリースされており、オープンソースのトレーニングコードの価値を示しています。INCITE、MPT、OpenLLaMAは、トレーニングコードとトレーニングデータセットがリリースされ、RedPajamaも中間モデルのチェックポイントを公開しています。 LLM360は、AMBERとCRYSTALCODERの2つの7BパラメータLLMをリリースし、そのトレーニングコード、データ、中間チェックポイント、分析も提供します。事前トレーニングデータセットの詳細、データの前処理、フォーマット、データミキシングの比率、LLMモデルのアーキテクチャの詳細については、研究で詳しく説明されています。 この研究では、以前の研究で導入された記憶スコアの使用と、メトリック、データチャンク、チェックポイントの公開により、研究者が対応関係を容易に見つけることができるようになることを示しています。研究ではまた、LLMが事前にトレーニングされたデータを削除することの重要性や、データのフィルタリング、処理、トレーニング順序の詳細についても強調しています。 研究では、ARC、HellaSwag、MMLU、TruthfulQAの4つのデータセットについてのベンチマーク結果が示され、モデルの事前トレーニング中のパフォーマンスが示されています。HellaSwagとARCの評価スコアはトレーニング中に単調に増加し、TruthfulQAのスコアは減少します。MMLUのスコアは最初に減少し、その後成長します。AMBERのパフォーマンスはMMLUなどのスコアで競争力があるものの、ARCでは遅れています。ファインチューニングされたAMBERモデルは、他の類似モデルと比較して強力なパフォーマンスを示します。 LLM360は、オープンソースLLMの完全かつ包括的なイニシアチブであり、オープンソースのLLM事前トレーニングコミュニティ内での透明性を推進するものです。この研究では、AMBERとCRYSTALCODERの2つの7B LLMをトレーニングコード、データ、中間モデルのチェックポイント、分析と共にリリースしています。研究では、チェックポイント、データチャンク、評価結果を公開することにより、包括的な分析と再現性を可能にするため、すべての角度からLLMをオープンソース化することの重要性を強調しています。 “`
「GPTの力を解き放つ:ReactJSでOpenAIのGPTを実装するための包括的なガイド」
この包括的なガイドでは、ReactJSでのGPTの実装について詳しく掘り下げ、開発者に開かれた複雑さと可能性を探ります
KubernetesでのGenAIアプリケーションの展開:ステップバイステップガイド
このガイドは、高い可用性のためにKubernetes上でGenAIアプリケーションを展開するための包括的で詳細な手順を提供します
Amazon SageMaker JumpStartを使用してLLMと対話するためのWeb UIを作成します
ChatGPTの発売および生成AIの人気の上昇は、AWS上で新しい製品やサービスを作成するためにこの技術をどのように利用できるかについての好奇心を持つ顧客たちの想像力を捉えていますこれにより、より対話的なエンタープライズチャットボットなどの製品やサービスを作成する方法を紹介しますこの記事では、Web UIを作成する方法について説明します
「エンティティ抽出、SQLクエリ、およびAmazon Bedrockを使用したRAGベースのインテリジェントドキュメントアシスタントの強化」
会話AIは、最近の生成AIの急速な発展により、特に指示微調整や人間のフィードバックからの強化学習といったトレーニング技術によって導入された大規模言語モデル(LLM)のパフォーマンス改善により、大きな進歩を遂げてきました正しくプロンプトされると、これらのモデルは特定のタスクのトレーニングデータなしで、一貫した会話を行うことができます[…]
「Amazon Titanを使用して簡単に意味論的画像検索を構築する」
デジタル出版社は、品質を損なうことなく、新しいコンテンツを迅速に生成・公開するために、常にメディアワークフローを効率化・自動化する方法を探し続けていますテキストの本質を捉えるために画像を追加することは、読む体験を向上させることができます機械学習技術を使うことで、そのような画像を発見することができます「印象的な画像は...」
会話の魔法を解き放つ:ChatGPTをReact.jsとNode.jsと統合する
この包括的なガイドでは、ChatGPTのフロントエンドにはReact.js、バックエンドにはNode.jsを組み合わせた強力なデュオの統合を探ります
「NVIDIAスタジオ」で美しく写実的なフードレンダリングを作り出す3Dアーティストが今週登場しました
エディターの注釈:この投稿は、私たちの週間In the NVIDIA Studioシリーズの一部であり、注目のアーティストを称え、クリエイティブなヒントやトリックを提供し、NVIDIA Studioテクノロジーがクリエイティブなワークフローの向上にどのように役立つかをデモンストレーションします。 感謝の季節です:人々や小さな瞬間に感謝する時間です。それらが私たちの人生を特別なものにするのです。 今週の注目のCG Realism YouTuberであるRavissen Carpenenさんは、食卓に見事なほどリアルな3Dフードの映像を提供しています。 彼の美味しそうなタイムラプス映像は、彼のYouTubeチャンネルで視聴できます。ブライトな音楽とスタイリッシュさを添えて楽しんでください。 Carpenenさんは、食べ物テーマのStudio Standoutビデオコンテストへの数多くの貢献者の一人であり、Roger Roqueさん(@rogerroqueid)、Nicole Morenaさん(@nicky.blender)、Heloise Cartさん(@isoheell)および Kris Theroinさん(@kristheorin)と一緒に作品を提供しました。 最新のアップデートでは、OBS Studioを使用するライブストリーマーは、HDR10キャプチャサポート、WHIPおよびWebRTC出力などの機能を備えた最新バージョンをダウンロードできます。詳細はこちらをご覧ください。 All About That Baste…
「ReactとChatGPT APIを使用して独自のAIチャットボットを作成する方法」
このブログでは、ReactとChatGPT APIを使用して独自の人工知能(AI)チャットボットを作成するプロセスを案内します
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.