Learn more about Search Results https://www.voagi.com/llama-2-wikipedia-knowledge-empowered-agent-creation.html
- You may be interested
- 時間系列予測における適合性予測
- ウェアラブルフィットネストラッカー:早...
- 「2023年の最高のAIスプレッドシートツール」
- データサイエンスプロジェクトにおけるGit...
- ロコムジョコに会おう:厳格な評価と比較...
- ロボ犬が100メートル走のギネス世界記録を...
- ITUデンマークの研究者は、神経発達プログ...
- 次の1時間の雨を予測する
- ネットワークXによるソーシャルネットワー...
- 「これらの仕事はAIによって置き換えられ...
- 「ジュリアスーパータイプの力を解き放つ」
- 私たちがChatGPTチャットボットを10倍速く...
- ハイパーパラメータ最適化のためのトップ...
- 「Amazon EC2 Inf1&Inf2インスタンス上の...
- 「大規模言語モデルによってプログラミン...
「2023年、オープンLLMの年」
2023年には、大型言語モデル(Large Language Models、LLMs)への公衆の関心が急増しました。これにより、多くの人々がLLMsの定義と可能性を理解し始めたため、オープンソースとクローズドソースの議論も広範な聴衆に届くようになりました。Hugging Faceでは、オープンモデルに大いに興味を持っており、オープンモデルは研究の再現性を可能にし、コミュニティがAIモデルの開発に参加できるようにし、モデルのバイアスや制約をより簡単に評価できるようにし、チェックポイントの再利用によってフィールド全体の炭素排出量を低減するなど、多くの利点があります(その他の利点もあります)。 では、オープンLLMsの今年を振り返ってみましょう! 文章が長くなりすぎないようにするために、コードモデルには触れません。 Pretrained Large Language Modelの作り方 まず、大型言語モデルはどのようにして作られるのでしょうか?(もし既に知っている場合は、このセクションをスキップしてもかまいません) モデルのアーキテクチャ(コード)は、特定の実装と数学的な形状を示しています。モデルのすべてのパラメータと、それらが入力とどのように相互作用するかがリストとして表されます。現時点では、大部分の高性能なLLMsは「デコーダーのみ」トランスフォーマーアーキテクチャのバリエーションです(詳細は元のトランスフォーマーペーパーをご覧ください)。訓練データセットには、モデルが訓練された(つまり、パラメータが学習された)すべての例と文書が含まれています。したがって、具体的には学習されたパターンが含まれます。ほとんどの場合、これらの文書にはテキストが含まれており、自然言語(例:フランス語、英語、中国語)、プログラミング言語(例:Python、C)またはテキストとして表現できる構造化データ(例:MarkdownやLaTeXの表、方程式など)のいずれかです。トークナイザは、訓練データセットからテキストを数値に変換する方法を定義します(モデルは数学的な関数であり、したがって入力として数値が必要です)。トークン化は、テキストを「トークン」と呼ばれるサブユニットに変換することによって行われます(トークン化方法によっては単語、サブワード、または文字になる場合があります)。トークナイザの語彙サイズは、トークナイザが知っている異なるトークンの数を示しますが、一般的には32kから200kの間です。データセットのサイズは、これらの個々の「原子論的」単位のシーケンスに分割された後のトークンの数としてよく測定されます。最近のデータセットのサイズは、数千億から数兆のトークンに及ぶことがあります!訓練ハイパーパラメータは、モデルの訓練方法を定義します。新しい例ごとにパラメータをどれだけ変更すべきですか?モデルの更新速度はどのくらいですか? これらのパラメータが選択されたら、モデルを訓練するためには1)大量の計算パワーが必要であり、2)有能な(そして優しい)人々が訓練を実行し監視する必要があります。訓練自体は、アーキテクチャのインスタンス化(訓練用のハードウェア上での行列の作成)および上記のハイパーパラメータを使用して訓練データセット上の訓練アルゴリズムの実行からなります。その結果、モデルの重みが得られます。これらは学習後のモデルパラメータであり、オープンな事前学習モデルへのアクセスに関して多くの人々が話す内容です。これらの重みは、推論(つまり、新しい入力の予測やテキストの生成など)に使用することができます。 事前学習済みLLMsは、重みが公開されると特定のタスクに特化または適応することもあります。それらは、「ファインチューニング」と呼ばれるプロセスを介して、ユースケースやアプリケーションの出発点として使用されます。ファインチューニングでは、異なる(通常はより専門化された小規模な)データセット上でモデルに追加の訓練ステップを適用して、特定のアプリケーションに最適化します。このステップには、計算パワーのコストがかかりますが、モデルをゼロから訓練するよりも財政的および環境的にはるかにコストがかかりません。これは、高品質のオープンソースの事前学習モデルが非常に興味深い理由の一つです。コミュニティが限られたコンピューティング予算しか利用できない場合でも、自由に使用し、拡張することができます。 2022年 – サイズの競争からデータの競争へ 2023年以前、コミュニティで利用可能だったオープンモデルはありましたか? 2022年初頭まで、機械学習のトレンドは、モデルが大きければ(つまり、パラメータが多ければ)、性能が良くなるというものでした。特に、特定のサイズの閾値を超えるモデルは能力が向上するという考えがあり、これらの概念はemergent abilitiesとscaling lawsと呼ばれました。2022年に公開されたオープンソースの事前学習モデルは、主にこのパラダイムに従っていました。 BLOOM(BigScience Large Open-science…
「2023年の振り返り:Post-ChatGPT時代のまとめと2024年の期待」
「ChatGPT、LangChain、ベクトルデータベース、およびRAGについての技術イベントと進歩に関するレビュージェネラティブAI領域のすべてをカバーします」
地球は平らではなく、あなたのボロノイ図もそうであるべきではありません
「Pythonを使用して、ジオスペーシャルの精度を探索し、正確なジオスペーシャル分析における球面と2Dボロノイ図の違いを理解する」
マシンラーニングにおける線形回帰の幾何学的解釈と古典統計学との比較
上記の画像は、最小二乗法(OLS)または線形回帰(古典統計学では同義的に使用される言葉)の幾何学的解釈を示しています見ている内容を解説しましょう...
‘LLMがデータアナリストを置き換えることはできるのか? LLMを活用したアナリストの構築’
私たちの中の誰もが、昨年の少なくとも1度は、ChatGPTがあなたの役割を置き換えることができるか(いや、むしろいつか)と考えたことがあると思います私も例外ではありません私たちは、最近の...
「Pythonで脂肪尾を数値化する4つの方法」
「これはパワーロウとファットテールに関するシリーズの三番目の記事です前回の記事では、実証データからパワーロウを検出する方法について探求しましたこの技術は便利ですが、ファットテールはさらなる調査が必要です...」
「たった1行のコードで、Optimum-NVIDIAが驚くほど高速なLLM推論を解除します」
大規模言語モデル(LLM)は、自然言語処理を革新し、複雑な問題を解決するためにますます展開されています。これらのモデルの最適な性能を達成することは、固有の計算的要求のために非常に困難です。最適化されたLLMの性能は、応答性のある高速な体験を求めるエンドユーザーだけでなく、改善されたスループットがコスト削減に直結するスケーリング展開にとっても非常に価値があります。 それがOptimum-NVIDIAの役割です。Hugging Faceで利用できるOptimum-NVIDIAは、非常にシンプルなAPIを通じてNVIDIAプラットフォーム上のLLMの推論を劇的に高速化します。たった1行のコードを変更するだけで、NVIDIAプラットフォーム上で最大28倍の高速な推論速度と1,200トークン/秒を実現することができます。 Optimum-NVIDIAは、NVIDIA Ada LovelaceおよびHopperアーキテクチャでサポートされる新しいfloat8フォーマットを活用した最初のHugging Face推論ライブラリです。さらに、NVIDIA TensorRT-LLMソフトウェアソフトウェアの高度なコンパイル機能により、LLMの推論を劇的に高速化します。 実行方法 Optimum-NVIDIAを使用したパイプラインで、素早い推論速度でLLaMAを実行するには、わずか3行のコードで開始できます。Hugging Faceのtransformersライブラリを使用してLLaMAを実行するためのパイプラインを既に設定している場合、パフォーマンスのピークを解除するためにわずかなコードの変更のみが必要です! - from transformers.pipelines import pipeline+ from optimum.nvidia.pipelines import pipeline# transformersと同じです!pipe = pipeline('text-generation', 'meta-llama/Llama-2-7b-chat-hf',…
「Protopia AIによる企業LLMアクセラレーションの基盤データの保護」
この記事では、Protopia AIのStained Glass Transformを使用してデータを保護し、データ所有権とデータプライバシーの課題を克服する方法について説明していますProtopia AIは、AWSと提携して、生成AIの安全かつ効率的なエンタープライズ導入のためのデータ保護と所有権の重要な要素を提供していますこの記事では、ソリューションの概要と、Retrieval Augmented Generation(RAG)などの人気のあるエンタープライズユースケースや、Llama 2などの最先端のLLMsでAWSを使用する方法をデモンストレーションしています
レギュラリゼーションテクニック:ニューラルネットワーク101
このニューラルネットワーク101シリーズでは、ニューラルネットワークのパフォーマンスを向上させる2つの方法について話しました:パラメータ調整と高速な勾配降下最適化手法これらを確認してください...
Pythonでのデータサイエンスの線形代数講座
数学の一分野である線形代数は、データサイエンスにおいて非常に役立ちます線形代数を使うことで、大量のデータに数学的な操作を行うことができます機械学習で使用されるほとんどのアルゴリズムも線形代数を使用しています
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.