Learn more about Search Results Zilliz

「ベクターデータベースのベンチマークには、ストリーミングワークロードを使用してください」

「ベクトルデータベースは、高次元ベクトルの検索のために構築されています現在、多くのベクトルは、GPTやCLIPなどの深層ニューラルネットワークによって生成された埋め込みで、テキストのようなデータポイントを表現します...」

Embedchainの紹介- LLM向けのデータプラットフォーム

イントロダクション LangChainやLangFlowのようなツールを紹介することで、Large Language Modelsを使ったアプリケーションの構築が容易になりました。さまざまなLarge Language Modelsを選択してアプリケーションを構築することが容易になった一方で、データのアップロード部分では、データがさまざまなソースから取得されるため、開発者にはデータをプレーンテキストに変換してベクトルストアに注入する必要があるため、依然として時間がかかることがあります。このような場合には、Embedchainが登場します。Embedchainを使用すると、さまざまなデータタイプのデータを簡単にアップロードしてLLMを瞬時にクエリできます。この記事では、embedchainの使い方について探っていきます。 学習目標 Large Language Models(LLMs)のデータの管理とクエリに関して、embedchainの重要性を理解する。 非構造化データを効果的に統合し、embedchainにアップロードする方法を学ぶ。これにより、さまざまなデータソースでシームレスに作業を行うことができる。 embedchainがサポートしているさまざまなLarge Language Modelsとベクトルストアについて知る。 ウェブページやビデオなどのさまざまなデータソースをベクトルストアに追加し、データの取り込み方法を理解する。 この記事はData Science Blogathonの一部として公開されました。 Embedchainとは何ですか? EmbedchainはPython/JavaScriptライブラリであり、開発者はこれを使ってLarge Language Modelsと多くのデータソースをシームレスに接続することができます。Embedchainを使用すると、非構造化データをアップロード、インデックス化、検索することができます。非構造化データには、テキスト、ウェブサイト/YouTube動画へのURL、画像など、いかなるタイプのデータも含まれます。 Emdechainを使ってこれらの非構造化データをアップロードする場合、単一のコマンドでデータをアップロードし、それらに対してベクトル埋め込みを作成し、接続されたLLMと即座にクエリを開始することができます。内部では、embedchainがデータをソースからロードし、チャンキングし、ベクトル埋め込みを作成し、最終的にベクトルストアに格納する処理を行います。 Embedchainを使った最初のアプリの作成…

『今日、企業が実装できる5つのジェネレーティブAIのユースケース』

様々な産業で、エグゼクティブたちはデータリーダーにAIを活用した製品を作り上げるよう求めていますそれにより時間の節約や収益の促進、競争上の優位性の獲得を目指していますまた、OpenAIのようなテックジャイアントも同様です…

「GPTCacheとは:LLMクエリセマンティックキャッシュの開発に役立つライブラリを紹介します」

ChatGPTと大規模言語モデル(LLM)は非常に柔軟性があり、多くのプログラムの作成が可能です。ただし、LLM APIの呼び出しに関連するコストは、アプリケーションが人気を集め、トラフィック量が増加するときに重要になる可能性があります。多くのクエリを処理する場合、LLMサービスには長い待ち時間が生じることもあります。 この困難に立ち向かうために、研究者はGPTCacheというプロジェクトを開発しました。GPTCacheは、LLMの回答を格納するためのセマンティックキャッシュを作成することを目指しています。オープンソースのGPTCacheプログラムは、LLMの出力回答をキャッシュすることにより、LLMを高速化することができます。キャッシュにリクエストされた応答がすでに格納されている場合、それを取得する時間を大幅に短縮することができます。 GPTCacheは柔軟でシンプルであり、どのアプリケーションにも適しています。OpenAIのChatGPTなど、多くの言語学習機械(LLM)と互換性があります。 どのように動作するのか? GPTCacheは、LLMの最終的な応答をキャッシュします。キャッシュは、最近使用された情報を迅速に取得するために使用されるメモリバッファです。新しいリクエストがLLMに送信されるたびに、GPTCacheはまずキャッシュを調べて要求された応答が既にそこに格納されているかどうかを判断します。キャッシュ内で応答が見つかった場合、すぐに返されます。そうでない場合は、LLMが応答を生成してキャッシュに追加します。 GPTCacheのモジュラーアーキテクチャにより、カスタムのセマンティックキャッシュソリューションを簡単に実装することができます。ユーザーはさまざまな設定を選択することで、各モジュールとの経験をカスタマイズすることができます。 LLMアダプターは、さまざまなLLMモデルで使用されるAPIとリクエストプロトコルを統一し、それらをOpenAI APIで標準化します。LLMアダプターは、コードの書き直しや新しいAPIの理解を必要とせずにLLMモデル間を移動できるため、テストと実験を簡素化します。 埋め込み生成器は、要求されたモデルを使用して埋め込みを作成し、類似性検索を実行します。サポートされているモデルでは、OpenAIの埋め込みAPIを使用できます。これには、GPTCache/paraphrase-albert-onnxモデルを使用するONNX、Hugging Face埋め込みAPI、Cohere埋め込みAPI、fastText埋め込みAPI、SentenceTransformers埋め込みAPIが含まれます。 キャッシュストレージでは、ChatGPTなどのLLMからの応答が取得できるまで保持されます。2つのエンティティが意味的に類似しているかどうかを判断する際には、キャッシュされた応答が取得され、要求されたパーティーに送信されます。GPTCacheはさまざまなデータベース管理システムと互換性があります。ユーザーは、パフォーマンス、拡張性、および最も一般的にサポートされているデータベースのコストに関する要件を最も満たすデータベースを選択することができます。 ベクトルストアの選択肢:GPTCacheには、オリジナルのリクエストから派生した埋め込みを使用して、K個の最も類似したリクエストを特定するベクトルストアモジュールが含まれています。この機能を使用すると、2つのリクエストがどれだけ類似しているかを判断することができます。さらに、GPTCacheはMilvus、Zilliz Cloud、FAISSなどの複数のベクトルストアをサポートし、それらとの作業に対して簡単なインターフェースを提供します。ユーザーは、さまざまなベクトルストアオプションを選択できます。これらのオプションのいずれかが、GPTCacheの類似性検索のパフォーマンスに影響を与える可能性があります。さまざまなベクトルストアをサポートすることで、GPTCacheは適応性があり、さまざまなユースケースとユーザーの要件を満たすことができます。 GPTCacheキャッシュマネージャーは、キャッシュストレージとベクトルストアコンポーネントのエビクションポリシーを管理します。キャッシュが一杯になったときに新しいデータのためのスペースを作るために、置換ポリシーが古いデータを削除するかどうかを決定します。 類似性評価器の情報は、GPTCacheのキャッシュストレージとベクトルストアのセクションから取得されます。入力リクエストをベクトルストア内のリクエストと比較することで、類似度を測定します。リクエストがキャッシュから提供されるかどうかは、類似度の程度に依存します。GPTCacheは類似性アルゴリズムを使用してキャッシュの一致を判断する能力を持つため、さまざまなユースケースとユーザーの要件に適応することができます。 特徴と利点 GPTCacheによるLLMクエリの待ち時間の短縮により、応答性と速度が向上します。 トークンベースおよびリクエストベースの価格体系により、LLMサービスに共通のコスト削減が可能です。GPTCacheはAPIの呼び出し回数を制限することで、サービスのコストを削減することができます。 GPTCacheはLLMサービスからの作業をオフロードする能力を持つため、スケーラビリティが向上します。リクエスト数が増えるにつれて、ピークの効率で運営を続けるのに役立ちます。 GPTCacheの助けを借りて、LLMアプリケーションの作成に関連するコストを最小限に抑えることができます。LLMで生成されたデータをキャッシュしたり、模擬したりすることで、LLMサービスにAPIリクエストを行わずにアプリをテストすることができます。 GPTCacheは、選択したアプリケーション、LLM(ChatGPT)、キャッシュストア(SQLite、PostgreSQL、MySQL、MariaDB、SQL Server、またはOracle)、およびベクトルストア(FAISS、Milvus、Ziliz Cloud)と連携して使用することができます。GPTCacheプロジェクトの目標は、毎回ゼロから始めるのではなく、できる限り以前に生成された返信を再利用することによって、GPTベースのアプリケーションで言語モデルを最も効率的に活用することです。

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us