Learn more about Search Results Yi

このAI論文では、「PolyID:高性能バイオベースポリマーの発見における機械学習の先駆者」として、ポリ-ンにおける機械学習を紹介しています

人工知能は生活のあらゆる側面で使用されています。AIは生活のあらゆる方面で使用され、化学やポリマーなどさまざまな分野で役立っています。化学やポリマー科学では、AIは科学者が新たな材料を発見するのに役立ちます。さまざまな化学物質の反応を予測し、新しい素材を作るための最適な組み合わせを提案します。これにより、化学物質やポリマーの開発プロセスがより迅速かつ効率的になります。 しかし、21世紀の材料科学者が直面している課題は、より持続可能なポリマーの開発であり、さらに優れた性能基準を持つものです。この課題は、主な資源が石油化学薬品に限定されている場合に特に顕著になります。この課題に対応するためには、創造力と高度な科学的手法の両方が必要であり、持続可能性原則に準拠し、現代の環境に配慮した基準を満たすポリマーの開発が求められます。 国立再生可能エネルギー研究所(NREL)の科学者であるBrandon Knottによれば、石油は主に炭素と水素の構成物である炭化水素であるとされています。これらの分子の配置は有益な性質を示し、さまざまな有利な特性の基盤を形成します。Knottの結論は、炭化水素の要素と石油の分子構成を理解することが重要であり、その特殊な特性をさまざまな応用に活用するためです。 炭化水素には酸素や窒素などの要素が欠けています。しかし、炭化水素だけでは提供できないより広範な機能を必要とするポリマーを製造する際には、これらの要素が必要です。Knottは、バイオマスや酸素および窒素を豊富に含む廃棄物を原料リストに導入するという解決策を提案しています。とうもろこしの茎、藻、さらにはゴミなどの材料には、追加の化学リンケージが存在し、化学者はポリマー製造プロセスで特定の特性を達成するための柔軟性が増します。このアプローチは、ポリマーの機能性を拡大するだけでなく、より持続可能で資源的な生産方法に貢献します。 国立再生可能エネルギー研究所(NREL)は、ポリマーの開発のバランスを促進するために、PolyID(ポリマー逆設計)と呼ばれる高度な機械学習ツールを使用しています。このツールは、分子構造に基づいて材料の特性を予測します。PolyIDを使用することで、研究者は数百万もの潜在的なポリマーデザインを評価し、特定の用途に合わせたショートリストを生成することができます。 PolyIDは、酸素、水素、炭素などの元素の配置と材料の特性の関連性を確立し、弾力性、耐熱性、シーラントの性能などの属性の予測を容易にします。NRELの科学者たちは、高密度ポリエチレン(石油ベースの材料)から成る現代の食品包装フィルムの代替となる生分解性のある材料を探し求めるために、PolyIDを効果的に利用しました。PolyIDは高温耐性や強力な蒸気シーリングなどの重要な特性を優先し、同時に生分解性や温室効果ガス排出量の低減といった環境上望ましい属性を取り入れました。 研究者たちはまた、PolyIDの予測の正確さを確認するために実験室でテストを行いました。その結果、7つすべてのポリマーが高温に耐性を示し、ネット温室効果ガス排出量を低下させる能力も示しました。さらに、これらのポリマーは包装された食品の新鮮さを延長させることも示し、PolyIDが環境に優しい高性能なポリマーソリューションを効率的に特定する可能性を示しました。 PolyIDは、ポリマーの分子組成と既知の特性を結びつける広範なデータベースを構築することにより、特定の物理的特性に向けた新しいポリマーの設計を予測する能力を獲得します。研究の主な著者であるNolan Wilsonによれば、このシステムは、以前に経験したことのない新しい構造に対して非常に正確な予測ができるとされています。

「コルーチンの実行のマスタリング:UnityにおけるYield、Flow、そして実用例」となります

この包括的なガイドを通じて、Unityでの高度なコルーチンの使用方法を探求しましょうyieldingのテクニック、ゲームループの統合、実践的な応用について深く掘り下げましょう

「2023年、オープンLLMの年」

2023年には、大型言語モデル(Large Language Models、LLMs)への公衆の関心が急増しました。これにより、多くの人々がLLMsの定義と可能性を理解し始めたため、オープンソースとクローズドソースの議論も広範な聴衆に届くようになりました。Hugging Faceでは、オープンモデルに大いに興味を持っており、オープンモデルは研究の再現性を可能にし、コミュニティがAIモデルの開発に参加できるようにし、モデルのバイアスや制約をより簡単に評価できるようにし、チェックポイントの再利用によってフィールド全体の炭素排出量を低減するなど、多くの利点があります(その他の利点もあります)。 では、オープンLLMsの今年を振り返ってみましょう! 文章が長くなりすぎないようにするために、コードモデルには触れません。 Pretrained Large Language Modelの作り方 まず、大型言語モデルはどのようにして作られるのでしょうか?(もし既に知っている場合は、このセクションをスキップしてもかまいません) モデルのアーキテクチャ(コード)は、特定の実装と数学的な形状を示しています。モデルのすべてのパラメータと、それらが入力とどのように相互作用するかがリストとして表されます。現時点では、大部分の高性能なLLMsは「デコーダーのみ」トランスフォーマーアーキテクチャのバリエーションです(詳細は元のトランスフォーマーペーパーをご覧ください)。訓練データセットには、モデルが訓練された(つまり、パラメータが学習された)すべての例と文書が含まれています。したがって、具体的には学習されたパターンが含まれます。ほとんどの場合、これらの文書にはテキストが含まれており、自然言語(例:フランス語、英語、中国語)、プログラミング言語(例:Python、C)またはテキストとして表現できる構造化データ(例:MarkdownやLaTeXの表、方程式など)のいずれかです。トークナイザは、訓練データセットからテキストを数値に変換する方法を定義します(モデルは数学的な関数であり、したがって入力として数値が必要です)。トークン化は、テキストを「トークン」と呼ばれるサブユニットに変換することによって行われます(トークン化方法によっては単語、サブワード、または文字になる場合があります)。トークナイザの語彙サイズは、トークナイザが知っている異なるトークンの数を示しますが、一般的には32kから200kの間です。データセットのサイズは、これらの個々の「原子論的」単位のシーケンスに分割された後のトークンの数としてよく測定されます。最近のデータセットのサイズは、数千億から数兆のトークンに及ぶことがあります!訓練ハイパーパラメータは、モデルの訓練方法を定義します。新しい例ごとにパラメータをどれだけ変更すべきですか?モデルの更新速度はどのくらいですか? これらのパラメータが選択されたら、モデルを訓練するためには1)大量の計算パワーが必要であり、2)有能な(そして優しい)人々が訓練を実行し監視する必要があります。訓練自体は、アーキテクチャのインスタンス化(訓練用のハードウェア上での行列の作成)および上記のハイパーパラメータを使用して訓練データセット上の訓練アルゴリズムの実行からなります。その結果、モデルの重みが得られます。これらは学習後のモデルパラメータであり、オープンな事前学習モデルへのアクセスに関して多くの人々が話す内容です。これらの重みは、推論(つまり、新しい入力の予測やテキストの生成など)に使用することができます。 事前学習済みLLMsは、重みが公開されると特定のタスクに特化または適応することもあります。それらは、「ファインチューニング」と呼ばれるプロセスを介して、ユースケースやアプリケーションの出発点として使用されます。ファインチューニングでは、異なる(通常はより専門化された小規模な)データセット上でモデルに追加の訓練ステップを適用して、特定のアプリケーションに最適化します。このステップには、計算パワーのコストがかかりますが、モデルをゼロから訓練するよりも財政的および環境的にはるかにコストがかかりません。これは、高品質のオープンソースの事前学習モデルが非常に興味深い理由の一つです。コミュニティが限られたコンピューティング予算しか利用できない場合でも、自由に使用し、拡張することができます。 2022年 – サイズの競争からデータの競争へ 2023年以前、コミュニティで利用可能だったオープンモデルはありましたか? 2022年初頭まで、機械学習のトレンドは、モデルが大きければ(つまり、パラメータが多ければ)、性能が良くなるというものでした。特に、特定のサイズの閾値を超えるモデルは能力が向上するという考えがあり、これらの概念はemergent abilitiesとscaling lawsと呼ばれました。2022年に公開されたオープンソースの事前学習モデルは、主にこのパラダイムに従っていました。 BLOOM(BigScience Large Open-science…

「BERTをゼロから訓練する究極のガイド:最終幕」

自分自身のBERTモデルの構築とトレーニング

ChatGPTはチェスをプレイできますか?

「2021年、私は複数の戦略と深層強化学習を用いた人間らしいチェスプレーヤーとして機能する人工知能モデルを開発しましたそして、AIボットを多くの相手と対戦させました…」

システムデザインシリーズ:ゼロから高性能データストリーミングシステムを構築するための究極のガイド!

「データストリーミング」は非常に複雑な印象を受けますし、「データストリーミングパイプライン」なんてなおさらです専門用語に囚われる前に、まずはその意味について話す前に、理由から始めましょう...

高度なRAGテクニック:イラスト入り概要

この投稿の目標は、利用可能なRAGアルゴリズムとテクニックの概要と説明をすることなので、コードの実装の詳細には立ち入らず、参照のみ行い、それについては放置します

このAI論文は、デュアル1-Dヒートマップを使用したリアルタイムマルチパーソンポーズ推定の画期的な技術であるRTMOを紹介しています

姿勢推定とは、物体の位置と方向を空間上で決定することを含む分野であり、継続的に新しい手法を開発して精度とパフォーマンスを向上させてきました。清華深圳国際研究大学院、上海AIラボ、南洋理工大学の研究者たちは、最近、新しいRTMOフレームワークを開発することでこの分野に貢献しました。このフレームワークは、姿勢推定の精度と効率を向上させるポテンシャルを持ち、ロボット工学、拡張現実、仮想現実など、さまざまなアプリケーションに大きな影響を与える可能性があります。 RTMOは既存の手法における精度とリアルタイム性のトレードオフを解消するために設計されたワンステージの姿勢推定フレームワークです。RTMOは座標の分類と密な予測モデルを統合し、トップダウンアプローチと同等の精度を実現しながら、高速性を維持することで、他のワンステージの姿勢推定器を凌駕しています。 リアルタイムのマルチパーソン姿勢推定はコンピュータビジョンの課題であり、既存の手法は速度と精度のバランスをとるために支援が必要です。トップダウンアプローチまたはワンステージアプローチのいずれかには、推論時間または精度の制約があります。RTMOはワンステージの姿勢推定フレームワークであり、YOLOアーキテクチャと座標の分類を組み合わせています。RTMOは動的座標分類器と特別な損失関数を用いて課題を解決し、COCOでの高い平均適合度を維持しながら、リアルタイムのパフォーマンスを実現しています。 この研究では、YOLOのようなアーキテクチャを使用し、背骨とハイブリッドエンコーダを持つRTMOというリアルタイムのマルチパーソン姿勢推定フレームワークを提案しています。デュアル畳み込みブロックは各空間レベルでスコアとポーズ特徴を生成します。この手法は動的座標分類器と特別な損失関数を用いて、座標の分類と密な予測モデルの非互換性に対処しています。動的ビンエンコーディングを使用してビンごとの表現を作成し、クラス分類タスクにはガウスラベルスムージングと交差エントロピー損失を用いています。 RTMOは、高い精度とリアルタイム性を備えたワンステージの姿勢推定フレームワークであり、先端のワンステージ姿勢推定器よりも優れた性能を発揮し、同じ背骨を使用しておよそ9倍速く動作します。最大モデルのRTMO-lはCOCO val2017で74.8%のAPを達成し、単一のV100 GPUで秒あたり141フレームを実行します。異なるシナリオで、RTMOシリーズはパフォーマンスと速度で同等の軽量なワンステージ手法を上回り、効率と正確性を示しています。追加のトレーニングデータを使用することで、RTMO-lは最新の81.7の平均適合度を達成します。このフレームワークは、各キーポイントに対して頑強かつコンテキスト感知型の予測を容易にする空間的に正確なヒートマップを生成します。 https://arxiv.org/abs/2312.07526v1 まとめると、この研究の要点は以下の通りです: RTMOは高い精度とリアルタイム性を持つ姿勢推定フレームワークです。 RTMOはYOLOアーキテクチャ内で座標の分類をシームレスに統合しています。 RTMOは、座標ビンを使用した革新的な座標の分類技術を活用し、正確なキーポイントの位置特定を実現しています。 RTMOは、先端のワンステージ姿勢推定器を凌駕し、COCOで高い平均適合度を達成しながらも、大幅に高速です。 RTMOは難しいマルチパーソンのシナリオで優れた性能を発揮し、頑健な、コンテキスト感知型の予測のための空間的に正確なヒートマップを生成します。 RTMOは既存のトップダウンおよびワンステージのマルチパーソン姿勢推定手法のパフォーマンスと速度をバランスさせます。

「データの必要量はどのくらいですか? 機械学習とセキュリティの考慮事項のバランス」

データサイエンティストにとって、データは多ければ多いほどよいものとは限りませんしかし、組織の文脈を広く見ると、自身の目標と他の考慮事項とのバランスを取らなければなりませんデータの収集及び...

データの汚染を防ぐためのサイバーセキュリティ対策

新しく発展している人工知能(AI)や機械学習(ML)のような技術は、世界中の産業や日常生活の改善に不可欠ですしかし、悪意のある者たちは常にこれらの新興技術をより邪悪なものに変える方法を探し求めており、データの悪用は深刻な問題となっていますそれに備える必要があります何が...

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us