Learn more about Search Results Vicuna
- You may be interested
- 🤗 Optimum IntelとOpenVINOでモデルを高...
- 大規模言語モデル(LLM)の時代におけるイ...
- NVIDIAとUTオースティンの研究者がMimicGe...
- 「お知らせ:フォーカスエンターテイメン...
- データサイエンティストのためのAI Chrome...
- 「Matplotlib チュートリアル:あなたの国...
- 「GenAIソリューションがビジネス自動化を...
- AI医療診断はどのように動作しますか?
- Active Directoryグループ固有のIAMロール...
- リトリーバル・オーグメンテッド・ジェネ...
- ロラハブにお会いしましょう:新しいタス...
- 最大のLLMベンチマーキングスイート:MEGA...
- Langchain、Weviate、およびStreamlitを使...
- GPTエンジニア:1つのプロンプトで強力な...
- 「ToolLLMをご紹介します:大規模言語モデ...
チャットアプリのLLMを比較する:LLaMA v2チャット対Vicuna
チャットアプリケーションにおいて、LLaMA v2 ChatとVicunaのどちらを使用するべきですか?2つのLLMの詳細な比較、それぞれの利点と欠点、そして勝者を選ぶためのヒューリスティックについて詳しく解説します
「2023年、オープンLLMの年」
2023年には、大型言語モデル(Large Language Models、LLMs)への公衆の関心が急増しました。これにより、多くの人々がLLMsの定義と可能性を理解し始めたため、オープンソースとクローズドソースの議論も広範な聴衆に届くようになりました。Hugging Faceでは、オープンモデルに大いに興味を持っており、オープンモデルは研究の再現性を可能にし、コミュニティがAIモデルの開発に参加できるようにし、モデルのバイアスや制約をより簡単に評価できるようにし、チェックポイントの再利用によってフィールド全体の炭素排出量を低減するなど、多くの利点があります(その他の利点もあります)。 では、オープンLLMsの今年を振り返ってみましょう! 文章が長くなりすぎないようにするために、コードモデルには触れません。 Pretrained Large Language Modelの作り方 まず、大型言語モデルはどのようにして作られるのでしょうか?(もし既に知っている場合は、このセクションをスキップしてもかまいません) モデルのアーキテクチャ(コード)は、特定の実装と数学的な形状を示しています。モデルのすべてのパラメータと、それらが入力とどのように相互作用するかがリストとして表されます。現時点では、大部分の高性能なLLMsは「デコーダーのみ」トランスフォーマーアーキテクチャのバリエーションです(詳細は元のトランスフォーマーペーパーをご覧ください)。訓練データセットには、モデルが訓練された(つまり、パラメータが学習された)すべての例と文書が含まれています。したがって、具体的には学習されたパターンが含まれます。ほとんどの場合、これらの文書にはテキストが含まれており、自然言語(例:フランス語、英語、中国語)、プログラミング言語(例:Python、C)またはテキストとして表現できる構造化データ(例:MarkdownやLaTeXの表、方程式など)のいずれかです。トークナイザは、訓練データセットからテキストを数値に変換する方法を定義します(モデルは数学的な関数であり、したがって入力として数値が必要です)。トークン化は、テキストを「トークン」と呼ばれるサブユニットに変換することによって行われます(トークン化方法によっては単語、サブワード、または文字になる場合があります)。トークナイザの語彙サイズは、トークナイザが知っている異なるトークンの数を示しますが、一般的には32kから200kの間です。データセットのサイズは、これらの個々の「原子論的」単位のシーケンスに分割された後のトークンの数としてよく測定されます。最近のデータセットのサイズは、数千億から数兆のトークンに及ぶことがあります!訓練ハイパーパラメータは、モデルの訓練方法を定義します。新しい例ごとにパラメータをどれだけ変更すべきですか?モデルの更新速度はどのくらいですか? これらのパラメータが選択されたら、モデルを訓練するためには1)大量の計算パワーが必要であり、2)有能な(そして優しい)人々が訓練を実行し監視する必要があります。訓練自体は、アーキテクチャのインスタンス化(訓練用のハードウェア上での行列の作成)および上記のハイパーパラメータを使用して訓練データセット上の訓練アルゴリズムの実行からなります。その結果、モデルの重みが得られます。これらは学習後のモデルパラメータであり、オープンな事前学習モデルへのアクセスに関して多くの人々が話す内容です。これらの重みは、推論(つまり、新しい入力の予測やテキストの生成など)に使用することができます。 事前学習済みLLMsは、重みが公開されると特定のタスクに特化または適応することもあります。それらは、「ファインチューニング」と呼ばれるプロセスを介して、ユースケースやアプリケーションの出発点として使用されます。ファインチューニングでは、異なる(通常はより専門化された小規模な)データセット上でモデルに追加の訓練ステップを適用して、特定のアプリケーションに最適化します。このステップには、計算パワーのコストがかかりますが、モデルをゼロから訓練するよりも財政的および環境的にはるかにコストがかかりません。これは、高品質のオープンソースの事前学習モデルが非常に興味深い理由の一つです。コミュニティが限られたコンピューティング予算しか利用できない場合でも、自由に使用し、拡張することができます。 2022年 – サイズの競争からデータの競争へ 2023年以前、コミュニティで利用可能だったオープンモデルはありましたか? 2022年初頭まで、機械学習のトレンドは、モデルが大きければ(つまり、パラメータが多ければ)、性能が良くなるというものでした。特に、特定のサイズの閾値を超えるモデルは能力が向上するという考えがあり、これらの概念はemergent abilitiesとscaling lawsと呼ばれました。2022年に公開されたオープンソースの事前学習モデルは、主にこのパラダイムに従っていました。 BLOOM(BigScience Large Open-science…
高度なRAGテクニック:イラスト入り概要
この投稿の目標は、利用可能なRAGアルゴリズムとテクニックの概要と説明をすることなので、コードの実装の詳細には立ち入らず、参照のみ行い、それについては放置します
「2023年のAI タイムライン」
はじめに 人工知能(AI)は、技術的な進歩が人間のつながりの本質と共鳴する形で私たちの日常生活と交差する魅力的な領域です。今年は、単なるアルゴリズムを超えてAIを身近に感じる革新の物語が展開されました。2023年のAIの素晴らしいハイライトを探索しながら、この旅に参加しましょう。 AI 2023年のハイライト 2023年のAIの世界で行われた最大の発見、進歩、および世界的な変革の一部を紹介します。これらの進歩がどのように、技術が私たちの人間の体験にシームレスに統合される未来を形作っているのか、探求してみましょう。 2023年1月のAIハイライト この年は、AIが医療と健康の分野で重要な進展を示しました。MITの研究者はマサチューセッツ総合病院と連携し、CTスキャンに基づいて患者の肺がんのリスクを評価できるディープラーニングモデルを開発しました。また、革命的な進歩として、研究者たちはAIを使ってゼロから人工的な酵素やタンパク質を作り出すことが可能なAIを開発しました。 他にも多くのイノベーションの中で、人工知能は視覚障害のある人々が食料品を見つけるのを手助けするために手杖に統合されました。一方、ビジネスのフロントでは、OpenAIがMicrosoftとの数年間にわたる数十億ドルの取引を通じてAIの開発に大きく投資しました。 2023年2月のAIハイライト 2023年2月には、OpenAIのChatGPTに関する話題が最も盛り上がりました。このAI搭載のチャットボットは、アメリカ合衆国医師資格試験(USMLE)に合格し、その人気は1億人以上のユーザーにまで急上昇しました。 ChatGPTの現象に応えて、GoogleはAI会話の領域に新しい要素となるBard A.I.を導入しました。また、MicrosoftもChatGPTと統合された新しいBing検索エンジンの導入に重要な一歩を踏み出しました。 Metaは、Metaエコシステム内でAIの能力を向上させるというLLaMAを発表しました。一方、Amazon Web Services(AWS)は、一流のAIプラットフォームであるHugging Faceと提携し、AI開発者を支援しました。 画期的な成果として、オックスフォードの研究者たちはRealFusionを示し、単一の画像から完全な360°写真モデルを再構築することができる最新のモデルを実証しました。 2023年2月には、AIの世界は音楽生成の領域にも足を踏み入れました。Google ResearchはMusicLMを紹介し、さまざまなジャンル、楽器、概念で曲を作成できるトランスフォーマーベースのテキストからオーディオへのモデルを提供しました。一方、Baiduの研究者はERNIE-Musicを発表し、拡散モデルを使用して、波形領域での最初のテキストから音楽を生成するモデルを開発しました。これらのモデルは、AIと創造的表現の融合における重要な進歩を示しています。 2023年3月のAIハイライト 2023年3月には、創造的なAIはいくつかの興味深い進展を見せました。AdobeはFireflyというAIをバックアップする画像生成および編集ツールの範囲でGenAIの領域に参入しました。一方、Canvaはユーザー向けにAIパワードの仮想デザインアシスタントとブランドマネージャーを導入しました。 テックジャイアンツのAIプロジェクトは、第1四半期終盤に向けて全力で進展していました。OpenAIはChatGPTとWhisperというテキストから音声へのモデルのためのAPIを発売しました。OpenAIはまた、ChatGPTのためのいくつかのプラグインをリリースし、最も高度なAIモデルであるGPT-4を正式に発表しました。 HubSpotはユーザー向けにChatSpot.aiとContent Assistantという2つの新しいAIパワードツールを導入しました。ZoomはスマートコンパニオンのZoom…
「vLLMの解読:言語モデル推論をスーパーチャージする戦略」
イントロダクション 大規模言語モデル(LLM)は、コンピュータとの対話方法を革新しました。しかし、これらのモデルを本番環境に展開することは、メモリ消費量と計算コストの高さのために課題となることがあります。高速なLLM推論とサービングのためのオープンソースライブラリであるvLLMは、PagedAttentionと呼ばれる新しいアテンションアルゴリズムと連携して、これらの課題に対処します。このアルゴリズムは効果的にアテンションのキーと値を管理し、従来のLLMサービング方法よりも高いスループットと低いメモリ使用量を実現します。 学習目標 この記事では、以下の内容について学びます: LLM推論の課題と従来のアプローチの制約を理解する。 vLLMとは何か、そしてどのように機能するのか理解する。 vLLMを使用したLLM推論のメリット。 vLLMのPagedAttentionアルゴリズムがこれらの課題を克服する方法を発見する。 vLLMを既存のワークフローに統合する方法を知る。 この記事はData Science Blogathonの一環として公開されました。 LLM推論の課題 LLMは、テキスト生成、要約、言語翻訳などのタスクでその価値を示しています。しかし、従来のLLM推論手法でこれらのLLMを展開することはいくつかの制約を抱えています: 大きなメモリフットプリント:LLMは、パラメータや中間アクティベーション(特にアテンションレイヤーからのキーと値のパラメータ)を保存するために大量のメモリを必要とし、リソースに制約のある環境での展開が困難です。 スループットの限定:従来の実装では、大量の同時推論リクエストを処理するのが難しく、スケーラビリティと応答性が低下します。これは、大規模言語モデルが本番サーバーで実行され、GPUとの効果的な連携が行えない影響を受けます。 計算コスト:LLM推論における行列計算の負荷は、特に大規模モデルでは高額になることがあります。高いメモリ使用量と低いスループットに加えて、これによりさらにコストがかかります。 vLLMとは何か vLLMは高スループットかつメモリ効率の良いLLMサービングエンジンです。これは、PagedAttentionと呼ばれる新しいアテンションアルゴリズムと連携して、アテンションのキーと値をより小さな管理しやすいチャンクに分割することで効果的に管理します。このアプローチにより、vLLMのメモリフットプリントが削減され、従来のLLMサービング手法と比べて大きなスループットを実現することができます。テストでは、vLLMは従来のHuggingFaceサービングよりも24倍、HuggingFaceテキスト生成インファレンス(TGI)よりも2〜5倍高速になりました。また、連続的なバッチ処理とCUDAカーネルの最適化により、インファレンスプロセスをさらに洗練させています。 vLLMのメリット vLLMは従来のLLMサービング手法よりもいくつかの利点を提供します: 高いスループット:vLLMは、最も人気のあるLLMライブラリであるHuggingFace Transformersよりも最大24倍の高いスループットを実現できます。これにより、より少ないリソースでより多くのユーザーに対応することができます。 低いメモリ使用量:vLLMは、従来のLLMサービング手法と比べて非常に少ないメモリを必要とするため、ソフトハードウェアのプラットフォームに展開する準備ができています。…
ハグ顔(Hugging Face)での最新技術の組み合わせであるミクストラル(Mixtral)へようこそ
Mixtral 8x7bは、ミストラルが本日リリースした刺激的な大型言語モデルで、オープンアクセスモデルの最新技術基準を上回り、多くのベンチマークでGPT-3.5を凌駕しています。私たちは、MixtralをHugging Faceエコシステムに包括的に統合してのローンチをサポートすることに興奮しています🔥! 本日リリースされる機能と統合には以下があります: ハブ上のモデル、モデルカードとライセンス(Apache 2.0) 🤗 Transformers統合 推論エンドポイントとの統合 高速で効率的な本番推論のためのテキスト生成推論との統合 🤗 TRLを使用した単一のGPUでのMixtralの微調整の例 目次 Mixtral 8x7bとは何ですか 名前について プロンプト形式 分からないこと デモ 推論 🤗 Transformersを使用する テキスト生成推論を使用する 🤗…
一緒にAIを学ぶ – Towards AI コミュニティニュースレター第4号
おはようございます、AI愛好者の皆さん! 今号では、Activeloopと共同で取り組んでいる大規模な言語モデル(LLM)のパフォーマンス向上に関する新しいビデオを共有します このビデオではさまざまな…
ChatGPTの初めての記念日:AIインタラクションの未来を変える
私たちの包括的な記事で、ChatGPTの1年間の旅とオープンソースのLarge Language Models(LLMs)の進化を探求してください技術の進歩、産業への応用、医療への影響、そしてAIの未来についての洞察を深く掘り下げますまた、OpenAIの噂されるQ*モデルについても触れます
詳細に説明されたLlama 2:Metaの大型言語モデル!
MetaのLlama 2についてもっと知りたいですか?ここには基礎から高度な仕様まで、すべてを網羅した初心者向けガイドがあります
「MMMUと出会おう:専門家レベルのマルチモーダルなチャレンジに向けたAIベンチマークで人工知能の一般的な発展への道筋をつける」
マルチモーダルプリトレーニングの進歩は、LXMERT、UNITER、VinVL、Oscar、VilBert、VLPなどのモデルに示されるように、さまざまなタスクに対応しています。 FLAN-T5、Vicuna、LLaVAなどのモデルは、指示に従う能力を向上させます。 Flamingo、OpenFlamingo、Otter、MetaVLのような他のモデルは、文脈を持った学習を探求します。 VQAのようなベンチマークは認識に焦点を当てますが、MMMは大学レベルの問題における専門家レベルの知識と緻密な推論を要求することで際立っています。包括的な知識カバレッジ、さまざまな画像形式、および既存のベンチマークとは異なる主題特化の推論に対する独自の強調点といった特徴があります。 MMMベンチマークは、IN.AI Research、ウォータールー大学、オハイオ州立大学、インディペンデント、カーネギーメロン大学、ビクトリア大学、プリンストン大学などの様々な組織の研究者によって提案され、さまざまな学問をカバーする大学レベルの問題が含まれています。専門家レベルの認識と推論を重視したこのベンチマークは、現行のモデルにとって大きな課題を提示します。 この研究では、人間の能力を超えるExpert AGIに向けた進歩を評価するためのベンチマークの必要性が強調されています。MMLUやAGIEvalなどの現行の基準はテキストに焦点を当てており、より多様なモーダルな課題が必要です。大規模なマルチモーダルモデル(LMMs)は有望でありますが、既存のベンチマークには専門家レベルのドメイン知識が必要です。MMMベンチマークはこのギャップを埋めるために導入され、複雑な大学レベルの問題に多様な画像形式と交差するテキストを特徴としています。これはLMMsにとって高度なAI能力を目指す難しい評価を要求し、専門家レベルの認識と推論を提供します。 Expert AGI評価のために設計されたMMMベンチマークは、6つの学問と30の科目にわたる11.5Kの大学レベルの問題で構成されています。データ収集は、視覚入力に基づいてトピックを選択し、学生のアノテータを参加させてマルチモーダルな質問を収集し、品質管理を実施することによって行われます。LLMsやLMMsを含む複数のモデルは、MMMベンチマークでゼロショットの設定で評価され、微調整やフューショットデモなしで正確な回答を生成する能力がテストされます。 MMMベンチマークは、GPT-4Vが55.7%の精度しか達成できないため、モデルにとって困難です。専門家レベルの認識と推論の要求により、LLMsやLMMsにとって厳しい評価となります。エラー分析により、視覚的な認識、知識表現、推論、およびマルチモーダル理解の課題が明らかになり、さらなる研究の領域が示唆されます。30種類の多様な画像形式で大学レベルの知識をカバーするMMMベンチマークは、基礎モデルの精度と専門分野での適用性を高めるためにドメイン固有の知識をトレーニングデータセットに豊かにすることの重要性を強調しています。 まとめると、MMMベンチマークの作成はExpert AGIの評価においてLMMsの重要な進展を表しています。このベンチマークは、現行のモデルに基本的な感覚スキルと複雑な推論を評価する機会を提供し、Expert AGI開発の進歩を理解するのに役立ちます。専門家レベルのパフォーマンスと推論能力を重視し、視覚的な認識、知識表現、推論、およびマルチモーダル理解におけるさらなる研究の領域をハイライトします。専門分野の精度と適用可能性を向上させるために、トレーニングデータセットにドメイン固有の知識を豊かにすることが推奨されます。
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.