Learn more about Search Results Tesla

「テスラ、『不十分な』自動運転安全制御で200万台の車両を回収」

テスラは、政府の規制当局が認めたように、誤用を防ぐための十分なコントロールを持っていないと判断されたAutopilotシステムの修正のために200万台以上の車両をリコールしています

『ODSCのAIウィークリーレビュー:12月15日の週』

「人工知能は、出てきたニュースの数々とともに光の速さで進化していますだから、ODSCで取り上げた話題や見落としてしまった他のストーリーを振り返ってみましょうそうすれば、すべてのAIに関する情報を把握できますよ...」

「2024年に探索する必要のある10の最高のGPU」

イントロダクション 人工知能(AI)、機械学習(ML)、深層学習(DL)の時代において、驚異的な計算リソースの需要は最高潮に達しています。このデジタル革命は私たちを未知の領域に駆り立て、データ駆動の洞察がイノベーションの鍵となる時代へと導いています。しかし、これらのフロンティアを開拓するためには、私たちの高まる野望に対応できるツールが必要です。 魅惑的なクラウドGPUの世界へようこそ。これらのグラフィックス処理ユニット(GPU)は、単なる計算リソースに留まらず、限りないパワーのエンジンです。クラウドGPUは、重い前払いのハードウェア投資なしに、超コンピューティング能力を利用する非凡な能力をユーザーに提供します。 このガイドは、主要なクラウドプロバイダーを舞台に、その強みや隠れた魅力を明らかにし、AI/ML/DLの旅をサポートします。 最高のGPUの概要 プロバイダー GPUオプション 価格 無料ティア 特徴 最適な用途 Amazon Web Services(AWS) T4、G4ad(Radeon Pro V520) オンデマンド&スポットインスタンス はい(制限付き) 多様なGPUオプション、広範なエコシステム 大企業、高要求のワークロード Microsoft Azure T4、A100、V620、M60、MI25…

「2023年のAI タイムライン」

はじめに 人工知能(AI)は、技術的な進歩が人間のつながりの本質と共鳴する形で私たちの日常生活と交差する魅力的な領域です。今年は、単なるアルゴリズムを超えてAIを身近に感じる革新の物語が展開されました。2023年のAIの素晴らしいハイライトを探索しながら、この旅に参加しましょう。 AI 2023年のハイライト 2023年のAIの世界で行われた最大の発見、進歩、および世界的な変革の一部を紹介します。これらの進歩がどのように、技術が私たちの人間の体験にシームレスに統合される未来を形作っているのか、探求してみましょう。 2023年1月のAIハイライト この年は、AIが医療と健康の分野で重要な進展を示しました。MITの研究者はマサチューセッツ総合病院と連携し、CTスキャンに基づいて患者の肺がんのリスクを評価できるディープラーニングモデルを開発しました。また、革命的な進歩として、研究者たちはAIを使ってゼロから人工的な酵素やタンパク質を作り出すことが可能なAIを開発しました。 他にも多くのイノベーションの中で、人工知能は視覚障害のある人々が食料品を見つけるのを手助けするために手杖に統合されました。一方、ビジネスのフロントでは、OpenAIがMicrosoftとの数年間にわたる数十億ドルの取引を通じてAIの開発に大きく投資しました。 2023年2月のAIハイライト 2023年2月には、OpenAIのChatGPTに関する話題が最も盛り上がりました。このAI搭載のチャットボットは、アメリカ合衆国医師資格試験(USMLE)に合格し、その人気は1億人以上のユーザーにまで急上昇しました。 ChatGPTの現象に応えて、GoogleはAI会話の領域に新しい要素となるBard A.I.を導入しました。また、MicrosoftもChatGPTと統合された新しいBing検索エンジンの導入に重要な一歩を踏み出しました。 Metaは、Metaエコシステム内でAIの能力を向上させるというLLaMAを発表しました。一方、Amazon Web Services(AWS)は、一流のAIプラットフォームであるHugging Faceと提携し、AI開発者を支援しました。 画期的な成果として、オックスフォードの研究者たちはRealFusionを示し、単一の画像から完全な360°写真モデルを再構築することができる最新のモデルを実証しました。 2023年2月には、AIの世界は音楽生成の領域にも足を踏み入れました。Google ResearchはMusicLMを紹介し、さまざまなジャンル、楽器、概念で曲を作成できるトランスフォーマーベースのテキストからオーディオへのモデルを提供しました。一方、Baiduの研究者はERNIE-Musicを発表し、拡散モデルを使用して、波形領域での最初のテキストから音楽を生成するモデルを開発しました。これらのモデルは、AIと創造的表現の融合における重要な進歩を示しています。 2023年3月のAIハイライト 2023年3月には、創造的なAIはいくつかの興味深い進展を見せました。AdobeはFireflyというAIをバックアップする画像生成および編集ツールの範囲でGenAIの領域に参入しました。一方、Canvaはユーザー向けにAIパワードの仮想デザインアシスタントとブランドマネージャーを導入しました。 テックジャイアンツのAIプロジェクトは、第1四半期終盤に向けて全力で進展していました。OpenAIはChatGPTとWhisperというテキストから音声へのモデルのためのAPIを発売しました。OpenAIはまた、ChatGPTのためのいくつかのプラグインをリリースし、最も高度なAIモデルであるGPT-4を正式に発表しました。 HubSpotはユーザー向けにChatSpot.aiとContent Assistantという2つの新しいAIパワードツールを導入しました。ZoomはスマートコンパニオンのZoom…

物議を醸している:GrokがOpenAIのコードを訓練に使用

Elon Muskの最新の事業は、生成AIベースのチャットボットGrokです。しかし、OpenAIのコードが訓練に使用されているという告発が浮上し、この論争が生じています。この論争は、Elon Musk、OpenAI、そして現在のOpenAIのCEOであるSam Altmanとの複雑な歴史に新たな要素を加えています。 告発が明らかに 最近の主張によれば、Grokは誤ってOpenAIのコードベースで訓練されている可能性があります。この憶測は、ユーザーであるJax WinterbourneがGrokからOpenAIのChatGPTに似た異常な応答を受けたことから燃え上がりました。ユーザーは、xAIがGrokの訓練にOpenAIのコードを利用している可能性に懸念を抱いています。 xAIの説明 告発に対して、xAIと関係のあるIgor Babuschkinは、Grokの訓練に使用された膨大なウェブデータが問題の原因であると説明しました。Babuschkinは、訓練プロセスがChatGPTの出力を誤って取得したことを認めつつも、将来のGrokのバージョンではこの問題が発生しないようにすると保証し、Grokの作成にOpenAIのコードは使用しなかったことを強調しました。 Elon Muskの反論 Twitterの論争に慣れたElon Muskは迅速に告発に反論しました。Muskは、Grokの応答が訓練時の大量のデータ収集によるものであると主張しました。Muskらしいスタイルで「さて、息子よ、このプラットフォームからデータを集めて訓練を行った以上、あなたは知っているはずだ」と反論しました。 Grok vs. ChatGPTの詳細比較 GrokとChatGPTの比較は、それぞれのユニークな特徴を明らかにします。GrokはXプラットフォームを通じたリアルタイムの情報アクセスが特徴であり、最初のChatGPTにはこの能力が欠けていました。しかし、この論争は、Grokの訓練データの出所に関する疑問を浮上させました。 xAIの共同研究と将来の展望 xAIはElon Muskの発案だけでなく、GoogleのDeepMindやMicrosoftからの経験を持つチームによって支えられています。xAIはTeslaや他のさまざまな企業との契約を公にし、Oracleとのクラウド活用のための契約が最近明らかになり、xAIがAI技術の進歩に対する取り組みを強調しています。 私たちの意見 これらの告発と反論の中で、ユーザーはAIの開発の複雑さを理解する必要があります。Grokの訓練データに関する論争は懸念すべきですが、それは同時にインターネットの広大な領域におけるデータの純粋性を保証するための課題を浮き彫りにしています。技術の進化とともに、AI開発者はこのような問題に迅速に対処し修正することが極めて重要になってきます。

SQLを練習するための最高のプラットフォーム

SQL、またはStructured Query Language(構造化クエリ言語)は、データベースの言語です。コンピュータがデータを理解し管理するための方法です。データアナリスト、科学者、エンジニアを目指す場合、SQLはテックワールドで必須のスキルです。このガイドでは、SQLのスキルを磨き、データ関連の面接で成功するための最良のプラットフォームをご紹介します。ですから、SQLの問題に困ったことがあるのであれば、心配しないでください。夢の役割に向けて、SQLのパワーを引き出すためのツールを持っています。 HackerRank HackerRankは、SQLスキルを磨くための素晴らしいプラットフォームであり、難易度のレベルやSQLのトピックによってカテゴリ分けされた様々な練習問題を提供しています。基本的なクエリから高度な最適化まで、中級者から上級者まで対応しています。 また、プラットフォームには時間制限付きのスキル認定テストもあり、自分のSQLの熟練度を評価することができます。HackerRankのゲーム感覚のアプローチで学習が楽しくなり、成果を示すバッジも獲得することができます。全体的には、SQLの専門知識を高めるためのダイナミックなリソースです。 Leetcode LeetCodeは人気のあるコーディングプラットフォームであり、SQLの問題についてもさまざまなスキルレベルのユーザー向けに問題を提供しています。実世界の問題解決に重点を置いており、ユーザーは企業のタグによって問題を絞り込むことができ、特定の業界のニーズに合わせて準備することができます。 ただし、無料アカウントでは利用できる問題の一部に制限があります。それでも、手順ごとの学習よりも問題解決に重点を置いているため、初心者にはより難しいかもしれません。 StrataScratch StrataScratchは、SQLの面接練習において手放せないプラットフォームであり、幅広い問題集を提供しています。トピックや難易度でフィルタリングすることもでき、企業固有のSQL面接の質問も探索することができます。コーディングワークスペースでは、PostgreSQL、MySQL、Microsoft SQL Server(ベータ版)をサポートしており、Pythonユーザーはpandasを活用して問題解決できます。 無料アカウントでは、解答付きの50問にアクセスでき、500以上のSQL問題に取り組む機会もありますので、StrataScratchはSQLスキルを磨くための貴重なリソースです。 SQLZOO SQLZooは、SQLを学び、実践するための初心者にやさしいプラットフォームです。インタラクティブなチュートリアルと演習を提供し、ユーザーは基本的な文からウィンドウ関数のようなより高度な概念まで進むことができます。 このプラットフォームでは、SQLクエリを直接ウェブブラウザで実践することができ、リアルタイムフィードバックを提供します。さまざまなSQLトピックを網羅していますが、シミュレートされたデータベースを使用しているため、実際のアプリケーションに適しているとは言い難いです。 SQLPAD SQLPadは、SQLクエリの実践と結果の視覚化を行うために設計されたWebアプリケーションです。シングルテーブルとマルチテーブルの操作、ウィンドウ関数など、さまざまなSQLトピックをカバーしています。このプラットフォームでは、難易度の異なる質問を提供し、以下のような業界別にカテゴリ分けしています:フィンテック、eコマース。 Postgres、MySQL、SQL Serverなど、複数のデータベースをサポートするSQLPadでは、無料アカウントで練習問題にアクセスすることができます。SQLスキルを実践を通じて磨くための貴重なツールであり、SQLとPythonのインタビューで優れた成績を収めたいデータ分析の専門家にとって有益です。 SQLFiddle SQLFiddleは、さまざまなデータベースシステム上でSQLクエリを書き、実行するための使いやすいWebツールです。MySQLやPostgreSQLなどの異なるシステムでテストできる機能を持ち、実際のデータベースと作業しているかのような体験ができます。SQLコードの共有やヘルプを求めるプラットフォームとしても優れていますが、初心者がSQLを学ぶための包括的な教材としてはあまり向いていません。 DataLemur…

「RetinaNetとKerasCVを使用した物体検出」

画像セグメンテーションをベースにしたミニプロジェクトを終えた後(こちらをご覧ください)、コンピュータビジョンの一環として、別の一般的なタスクに取り掛かる準備ができました:オブジェクト検出ですオブジェクト検出とは...

「みんなのためのLLM:ランニングLangChainとMistralAI 7BモデルをGoogle Colabで」

『誰もが大規模言語モデルは、定義通り大規模であることを知っていますそして、それもつい最近までは高性能なハードウェアの所有者または少なくともクラウドアクセスのために支払った人々にのみ利用可能でした...』

AI(人工知能)の謎を解明:フォローすべきブロガーやライター

この記事では、注目すべき影響力のあるAIインフルエンサーや研究者、執筆者を紹介しています彼らの経歴、業績、AIの進歩に関する重要な洞察について学びましょう

アマゾンEC2 Deep Dive:ハードウェアインサイトを活用したワークロードの最適化

あなたのアプリケーションのニーズに合った適切な基盤ハードウェアを選ぶことで、クラウドリソースの効率が向上します本記事では、このアプローチを取る方法について説明します

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us