Learn more about Search Results Snorkel AI

「Snorkel AI x Hugging Face 企業向けの基盤モデルを解放する」

この記事は、2023年4月6日にSnorkelのブログでFriea Bergによって最初に公開された記事をクロスポストしています。 OpenAIがGPT-4をリリースし、Googleがベータ版でBardを導入するにつれて、世界中の企業は基盤モデルの力を活用することに興奮しています。この興奮が高まるにつれて、ほとんどの企業や組織が基盤モデルを適切に活用するための準備ができていないことが明らかになっています。 基盤モデルは企業にとって独自の課題を提供します。これまで以上に大きくなったサイズのため、自社でホストすることは困難で高額になります。また、製品の使用ケースにオフシェルフのFMsを使用することは、パフォーマンスの低下やガバナンスとコンプライアンスのリスクの増加を意味する可能性があります。 Snorkel AIは、基盤モデルと実際の企業の使用ケースとのギャップを埋める役割を果たしており、PixabilityなどのAIイノベーターによって印象的な結果をもたらしています。我々は、大量の使いやすいオープンソースモデルのリポジトリで最もよく知られているHugging Faceと提携し、AIアプリケーションの開発に柔軟性と選択肢を提供します。 Snorkel Flowにおける基盤モデル Snorkel Flow開発プラットフォームを使用すると、ユーザーは基盤モデルを特定の使用ケースに適応させることができます。アプリケーションの開発は、データ上の選択した基盤モデルの予測を「そのまま」検査することから始まります。これらの予測は、それらのデータポイントのトレーニングラベルの初期バージョンとなります。Snorkel Flowは、そのモデルのエラーモードを特定し、プログラムによるラベリングを効率的に修正するためのユーザーを支援します。これには、ヒューリスティックやプロンプトを使用したトレーニングラベルの更新が含まれる場合もあります。基盤モデルは、更新されたラベルで微調整され、再評価されます。この反復的な「検出と修正」プロセスは、適応された基盤モデルが十分な品質に達するまで続きます。 Hugging Faceは、この強力な開発プロセスを可能にするために、150,000以上のオープンソースモデルを1つのソースから直ちに利用できるようにしています。これらのモデルの多くは、BioBERTやSciBERTなどの特定のドメインのデータに特化しています。これらのモデルの1つ、あるいはさらに良い場合は複数の特化したベースモデルは、ユーザーに初期予測やラベルの改善のためのプロンプト、または展開用の最終モデルの微調整のスタートを与えることができます。 Hugging Faceはどのように役立ちますか? Snorkel AIのHugging Faceとのパートナーシップにより、Snorkel Flowの基盤モデルの機能が強化されます。最初はわずかな数の基盤モデルのみを提供していました。それぞれが専用のサービスを必要とし、費用対効果が低く、急速に増え続けるさまざまなモデルを提供することが難しかったため、企業が柔軟に利用できるようにすることは困難でした。Hugging FaceのInference Endpointサービスを採用することで、ユーザーが利用できる基盤モデルの数を拡大することができました。 Hugging Faceのサービスを使用すると、ユーザーは数回のクリックでモデルAPIを作成し、すぐに使用することができます。重要なのは、この新しいサービスには「一時停止と再開」の機能があり、クライアントが必要な場合にモデルAPIをアクティブにし、必要ない場合には休眠させることができる点です。…

「スノーケルAIのCEO兼共同創設者、アレックス・ラットナー – インタビューシリーズ」

アレックス・ラトナーは、スタンフォードAIラボを母体とする会社、Snorkel AIのCEO兼共同創設者ですSnorkel AIは、手作業のAI開発プロセスをプログラムソリューションに変換することで、AIの開発を迅速かつ実用的に行いますSnorkel AIは、独自のデータと知識を使用して、企業が独自のワークロードに対して動作するAIを開発することを可能にします

「2023年におけるAIをリードするさらなる13の組織」

こちらはAIの顔を変える会社の2部構成、後半ですAIは、企業、非営利団体、政府が人工知能の力を見出し、数多くの産業に急速に拡大していますでは、いくつかの会社を見てみましょう...

このAIニュースレターは、あなたが必要とするすべてです#65

今週のAIでは、AI規制に関する進展がありましたエロン・マスクやマーク・ザッカーバーグなどのテックリーダーが60人以上の上院議員とAIについて話し合いましたが、彼らは皆同意しました-

AIのマスタリング:プロンプトエンジニアリングソリューションの力

私と一緒にAIプロンプトエンジニアリングの素晴らしさを発見しましょう!ユーモアのある効果的なプロンプトの制作によって、AIモデルのフルポテンシャルを引き出すことができます

「AV 2.0、自動運転車における次のビッグウェイブ」

自律型車載技術の新たな時代であるAV2.0は、知覚、計画、制御など多くの要素を制御できる統合型のAIモデルによって特徴付けられています。 ロンドンを拠点とする自律走行技術企業のWayveがリードしています。 NVIDIAのAIポッドキャストの最新エピソードでは、ホストのKatie Burke Washabaughが同社の共同創設者でCEOのAlex Kendall氏と対談し、AV 2.0が自動運転車の将来にどのような意味を持つのかについて話しました。 AV 1.0のように車両の知覚能力を高めるために複数のディープニューラルネットワークを使用することに焦点を当てるのではなく、AV 2.0では現実世界のダイナミックな環境で意思決定を行うために包括的な車載インテリジェンスが必要とされています。 The AI PodcastWayve CEO Alex Kendall on Making a Splash in Autonomous Vehicles –…

「リトリーバル増強生成(RAG)とファインチューニング、どちらを選ぶべきですか?」

最近数ヶ月間、大型言語モデル(LLM)の人気が急上昇しています。自然言語処理、自然言語理解、自然言語生成の強みに基づいて、これらのモデルはほとんどの産業でその能力を発揮しています。生成型人工知能の導入により、これらのモデルは人間のようなテキスト応答を生成するように訓練されるようになりました。 有名なGPTモデルにより、OpenAIはLLMの力を示し、変革的な開発の道を切り拓きました。ファインチューニングやRetrieval Augmented Generation(RAG)などの手法により、より正確で文脈豊かな応答を提供するための問題に対するAIモデルの能力が向上しています。 Retrieval Augmented Generation(RAG) RAGでは、検索ベース型と生成型のモデルが組み合わされます。従来の生成型モデルとは異なり、RAGは基盤となるモデルを変更せずに、対象となる最新のデータを取り込むことで既存の知識の枠組みを超えて活動することができます。 RAGの基本的なアイデアは、特定の組織やドメインのデータに基づいて知識リポジトリを構築することです。リポジトリが定期的に更新されるため、生成型AIは最新の文脈に即したデータにアクセスすることができます。これにより、モデルは組織のニーズに合わせて、より正確かつ複雑な応答をユーザーの入力に対して返すことができます。 大量の動的データは標準の形式に変換され、知識ライブラリに保持されます。その後、データは埋め込まれた言語モデルを使用して数値表現を作成し、ベクトルデータベースに保持されます。RAGにより、AIシステムは言葉を生成するだけでなく、最新かつ関連性の高いデータを用いて生成することが保証されます。 ファインチューニング ファインチューニングは、事前に訓練されたモデルを特定のアクションを実行したり、特定の振る舞いを表示したりするためにカスタマイズする方法です。これは、多数のデータポイントで訓練された既存のモデルを取り上げて、より具体的な目標に適合するように修正することを含みます。自然言語コンテンツを生成するのに長けた事前訓練済みモデルを、ジョークや詩、要約など特定の対象に特化させることができます。ファインチューニングにより、開発者は広範なモデルの知識とスキルを特定の主題やタスクに適用することができます。 ファインチューニングは特にタスク固有のパフォーマンス向上に役立ちます。特定のタスクについて、専門的な情報を適切に選択したデータセットを通じて提供することで、モデルは精度の高い文脈に即した出力を生成する能力を獲得します。ファインチューニングにより、初めから始めるのではなく既存の情報を活用するため、トレーニングに必要な時間と計算リソースも大幅に削減されます。この方法により、モデルは狭いドメインに順応することで、より効果的に焦点を絞った回答を提供することができます。 ファインチューニングとRAGの評価時に考慮すべき要素 RAGは頻繁なモデルの再学習を必要とせずに、定期的に外部の情報源から最新のデータを要求することで、動的データの状況で非常に優れたパフォーマンスを発揮します。一方、ファインチューニングには再現性の保証がないため、信頼性が低くなります。 RAGは他の情報源から関連するデータを取得することで、LLMの機能を向上させます。これはドキュメントの要約、オープンドメインの質問応答、ナレッジベースからデータを取得できるチャットボットなど、外部の知識へのアクセスが必要なタスクに適しています。ファインチューニングは頻繁に変わるデータソースに対しては適用できない場合があります。 RAGは小さなモデルの利用を制限します。一方、ファインチューニングは小規模モデルの効果を高めることで、より迅速で費用のかかる推論を可能にします。 RAGは自動的に取得した情報に基づいて言語のスタイルやドメインの専門化を調整することはありません。一方、ファインチューニングは行動や文章スタイル、ドメイン固有の知識の調整により、特定のスタイルや専門領域との深い整合性を提供します。 RAGは一貫性があり、情報をもとに回答を生成します。ファインチューニングは幻覚を抑えることができるかもしれませんが、新しい刺激にさらされると、生成される反応は作り上げられる場合もあります。 RAGは応答生成を分割して明示的なフェーズに分け、データの取得方法に関する情報を提供することで透明性を提供します。一方、ファインチューニングは回答の基本となるロジックの透明性が低くなります。 RAGとファインチューニングのユースケースの違いは何ですか? LLMはテキストのカテゴリ分類、感情分析、テキスト生成などのさまざまなNLPタスクに対してファインチューニングできます。これらのタスクでは、入力に応じてテキストを理解し生成することが主な目的となります。一方、RAGモデルは、ドキュメントの要約、オープンドメインの質問応答、ナレッジベースからデータを取得できるチャットボットなど、外部の知識へのアクセスがタスクに必要な場合に優れたパフォーマンスを発揮します。 トレーニングデータに基づくRAGとFine-tuningの違い LLMをFine-tuningする際、彼らは特定の検索手法を使用するわけではありませんが、一般的には目標タスクに一致するラベル付きの例から構成されるタスク固有のトレーニングデータに依存します。一方、RAGモデルは検索と生成の両方のタスクを行うために訓練されます。これには、成功した検索と外部情報の使用を示すデータを生成のための教師付きデータと組み合わせる必要があります。…

2023年のMLOpsの景色:トップのツールとプラットフォーム

2023年のMLOpsの領域に深く入り込むと、多くのツールやプラットフォームが存在し、モデルの開発、展開、監視の方法を形作っています総合的な概要を提供するため、この記事ではMLOpsおよびFMOps(またはLLMOps)エコシステムの主要なプレーヤーについて探求します...

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us