Learn more about Search Results Shapely

地球は平らではなく、あなたのボロノイ図もそうであるべきではありません

「Pythonを使用して、ジオスペーシャルの精度を探索し、正確なジオスペーシャル分析における球面と2Dボロノイ図の違いを理解する」

「Amazon Bedrock と Amazon Location Service を使用したジオスペーシャル生成AI」

今日、ジオスペーシャルのワークフローは、通常、データの読み込み、変換、そしてマップ、テキスト、またはチャートなどの視覚的インサイトの生成から構成されます生成AIは、これらのタスクを自律エージェントを介して自動化することができますこの投稿では、Amazon Bedrockの基本モデルを使用して、ジオスペーシャルタスクを完了するためにエージェントにパワーを与える方法について説明しますこれらのエージェントはさまざまなタスクを実行することができます[...]

「トップ50以上のジオスペーシャルPythonライブラリ」

導入 地理情報解析は、都市計画や環境科学から物流や災害管理まで、さまざまな分野で重要な要素です。データへのアクセスや操作、高度な機械学習技術、地理情報システム(GIS)ソフトウェアとのシームレスな統合など、Pythonは地理情報解析およびデータサイエンティストにとって必須の言語です。本記事では、Pythonが地理情報解析をどのように変革し、この重要な分野を効率化・強化するための豊富なライブラリについて分かりやすく概説します。 Pythonの地理情報解析における役割 Pythonは、その多様性、豊富なエコシステムのライブラリ、使いやすさのために地理情報解析で重要な役割を果たしています。以下に、Pythonの地理情報解析での重要な側面をいくつか紹介します。 データへのアクセスと操作:Pythonは、GDAL、Fiona、Rasterioなどのライブラリを提供しており、シェープファイル、GeoTIFFなどさまざまな形式の地理情報データの読み書きや操作が可能です。これらのライブラリを使用することで、ユーザーは簡単に地理情報データにアクセスし、操作することができます。 データの可視化:Matplotlib、Seaborn、PlotlyなどのPythonライブラリは、インタラクティブで情報豊かな地理情報の可視化に広く使用されています。これらのツールを使用すると、地理データを効果的に表現するためのマップ、チャート、グラフを作成することができます。 地理情報解析ライブラリ:Pythonには、GeoPandas、Shapely、Pyprojなどの特化した地理情報解析ライブラリがあり、ジオメトリオブジェクトの操作、空間関係、座標変換などを容易に行うことができます。これらのライブラリを使用すると、複雑な空間分析を簡素化することができます。 ウェブマッピング:FoliumやBokehなどのPythonライブラリを使用すると、開発者はインタラクティブなウェブマップやアプリケーションを作成することができます。これらのツールはLeafletやOpenLayersなどのウェブマッピングサービスと統合することができ、地理情報データのオンラインでの可視化や共有が容易になります。 機械学習とAI:scikit-learnやTensorFlowなどのPythonの幅広い機械学習ライブラリを活用することで、地理情報解析者はリモートセンシングデータ、土地利用分類などに機械学習技術を適用することができます。これは、予測モデリングやパターン認識に役立ちます。 地理情報データサイエンス:Pythonは、地理情報データを扱うデータサイエンティストにとってのお気に入りの言語です。データの前処理、特徴エンジニアリング、モデル構築をサポートしており、現実世界の地理情報問題の解決に理想的な選択肢です。 GISソフトウェアとの統合:Pythonは、ArcGIS、QGIS、GRASS GISなどの人気のあるGISソフトウェアとシームレスに統合することができます。これにより、ツールの機能を拡張したり、繰り返しのタスクを自動化したり、ワークフローをカスタマイズしたりすることができます。 関連記事: 地理情報データ解析の初心者ガイド 50以上の地理情報Pythonライブラリ Arcpy Arcpyは、人気の地理情報ソフトウェアであるArcGISのタスクを自動化およびカスタマイズするためにEsriによって開発されたPythonライブラリです。ArcGISの機能へのアクセスを提供し、スクリプト化および機能の拡張を可能にします。Arcpyはジオプロセシング、マップの自動化、空間解析についてのツールを提供しています。ユーザーは地理情報データの作成と管理、空間クエリの実行、複雑なGISワークフローの自動化などを行うことができます。ArcGISユーザーやGIS専門家にとって貴重なリソースです。 Basemap Basemapは、静止、インタラクティブ、アニメーションの地図を作成するためのPythonライブラリですが、現在はCartopyに取って代わられており、非推奨となっています。Basemapは、さまざまな地図投影法で地理情報データの可視化を可能にしました。Basemapを使用すると、さまざまな地図投影法にデータをプロットしたり、地理的な特徴を追加したり、地図のレイアウトをカスタマイズしたりすることができます。現在はメンテナンスされていませんが、かつては地理情報の可視化に広く使用されているツールでした。 Cartopy Cartopyは、地理情報データの可視化に使用されるPythonライブラリです。Basemapに代わるより現代的で現在もメンテナンスが行われている選択肢であり、さまざまな地図投影法やカスタマイズオプションを提供しています。Cartopyは、地理情報データの可視化、複数の地図データソースとの統合をサポートしています。科学や環境データの可視化に使用され、さまざまなアプリケーションに適しています。 EarthPy EarthPyは、環境科学の文脈での地球空間データ解析のために設計されたPythonパッケージです。主に衛星画像や航空画像の取り扱いに焦点を当てています。EarthPyは、地球空間データの処理、分析、および可視化のためのツールを提供します。土地被覆分析、時系列データ、およびラスターデータの操作に役立ちます。 Fiona-GO…

アマゾンセイジメーカーの地理情報能力を使用したメタン排出ポイント源の検出と高周波監視

メタン(CH4)は、石油やガス抽出、石炭採掘、大規模な畜産、廃棄物処理など、他のさまざまな源から発生する、主要な人為的温室効果ガスですCH4の地球温暖化潜在能はCO2の86倍であり、気候変動に関する政府間パネル(IPCC)は、メタンが観測されている温室効果の30%を担っていると推定しています

「PyrOSM Open Street Mapデータとの作業」

「もし以前にOSMデータを扱ったことがあるなら、それが抽出しにくいことを知っているでしょうOSMデータは巨大であり、分析したい内容に対して効率的な解決策を見つけることはしばしば難しいですPyrOSMは...」

「GeoJSONからネットワークグラフへ:Pythonで世界の国境を分析する」

Pythonは、さまざまな研究分野の問題を簡単かつ迅速に解決するための広範なライブラリを提供していますジオスペーシャルデータ分析やグラフ理論は、Pythonが特に優れている研究分野の2つです…

「すべての道はローマに通じるのですか?」

最近、ハーバードのデーターバース上で「ローマ道路ネットワーク(バージョン2008)」という興奮するデータセットを見つけましたこれは完璧なGIS形式で表現された、ローマ帝国の歴史的な道路ネットワークです...

「プラネットデータとAmazon SageMakerの地理空間能力を活用して、クロップセグメンテーションの機械学習モデルを構築する」

この分析では、K最近傍法(KNN)モデルを使用して、作物セグメンテーションを実施し、農業地域における地上の真相画像とこれらの結果を比較します私たちの結果は、KNNモデルによる分類が、2015年の地上の真相分類データよりも2017年の現在の作物畑の状態をより正確に表していることを示していますこれらの結果は、Planetの高頻度の地球規模の画像の力を示しています農業畑は頻繁に変化し、シーズンによっては複数回変化することがありますが、この土地を観察し分析するために高頻度の衛星画像が利用可能であることは、農業地や急速に変化する環境の理解にとって非常に価値のあるものとなります

「大規模なラスター人口データの探索」

オンラインで美しい人口地図がよく出回っているのを見かけますが、通常、チュートリアルに表示されている以外の地図セグメントを可視化する、または...というような技術的な部分で詰まってしまいます

「GeoPandasを使ったPythonにおける地理空間データの活用」

GeoPandasを使用した地理空間データ分析の包括的な紹介

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us