Learn more about Search Results Sergei A
- You may be interested
- 無料のAI製品写真ツール
- 「高解像度画像を使用したAmazon Rekognit...
- 「マーク・A・レムリー教授による生成AIと...
- 「マルチモーダルAIの最新の進歩:(ChatG...
- マイクロソフトリサーチとジョージア工科...
- MPT-7Bをご紹介します MosaicMLによってキ...
- Google DeepMind(グーグルディープマイン...
- 新しいトピックを本当に学ぶには、時間を...
- ウェブ3.0とブロックチェーンの進化による...
- 私たちの新しいコンテンツガイドラインと...
- 「ゼロからLLMを構築する方法」
- 「Google Quantum AIは、薬学、化学、およ...
- 「他のAIを教えるAI」
- 「アマゾン対Google対マイクロソフト:AI...
- ReactとExpressを使用してChatGPTパワード...
ランダムフォレストの解釈
近年、大型言語モデルについて大いに盛り上がりがありますが、それは従来の機械学習手法が絶滅の運命を辿るべきだということではありません私は、ChatGPTがデータセットを与えられた場合に役立つとは疑っています...
ナレッジグラフ、ハードウェアの選択、Pythonのワークフロー、およびその他の11月に読むべきもの
データと機械学習の専門家にとって、1年間のイベント満載な時期もいよいよ終盤に入ってきました皆さんの中には、新しいスキルを学ぶために最後の力を振り絞り、最新の研究に追いつくために奮闘している方も多いことでしょう
「ファストテキストを使用したシンプルなテキスト分類」となります
自然言語処理は、業務のユースケースに指数関数的に適用されていますビジネスを変革する最もシンプルなAI自動化の一つは、テキスト分類です
組合せ最適化によるニューラルネットワークの剪定
Posted by Hussein Hazimeh、Athenaチームの研究科学者、およびMITの大学院生であるRiade Benbakiによる投稿 近代的なニューラルネットワークは、言語、数学的推論、ビジョンなど、さまざまなアプリケーションで印象的なパフォーマンスを達成しています。しかし、これらのネットワークはしばしば大規模なアーキテクチャを使用し、多くの計算リソースを必要とします。これにより、特にウェアラブルやスマートフォンなどのリソース制約のある環境では、このようなモデルをユーザーに提供することが実用的ではありません。事前学習済みネットワークの推論コストを軽減するための広く使用されている手法は、いくつかの重みを削除することによる枝刈りですが、これはネットワークの有用性にほとんど影響を与えない方法で行われます。標準的なニューラルネットワークでは、各重みは2つのニューロン間の接続を定義します。したがって、重みが剪定された後、入力はより小さな一連の接続を介して伝播し、より少ない計算リソースを必要とします。 元のネットワークと剪定されたネットワークの比較。 枝刈り手法は、ネットワークのトレーニングプロセスのさまざまな段階で適用できます。トレーニング後、トレーニング中、またはトレーニング前(つまり、重みの初期化直後)に適用できます。この投稿では、トレーニング後の設定に焦点を当てています。つまり、事前学習済みネットワークが与えられた場合、どの重みを剪定すべきかをどのように決定できるかという問題です。最も一般的な手法の1つは、マグニチュード剪定です。この手法では、最も小さい絶対値を持つ重みを削除します。効率的ではありますが、この手法は重みの削除がネットワークのパフォーマンスに与える影響を直接考慮しません。もう1つの一般的な手法は、最小化された損失関数に対する重みの影響度に基づいて重みを削除する最適化ベースの剪定です。概念的には魅力的ですが、既存の最適化ベースの手法の多くは、パフォーマンスと計算要件の間に深刻なトレードオフがあるようです。粗い近似を行う手法(例:対角ヘッシアン行列を仮定する)はスケーラブル性が高く、パフォーマンスは比較的低いです。一方、より少ない近似を行う手法はパフォーマンスが向上する傾向がありますが、スケーラブル性ははるかに低いようです。 「Fast as CHITA: Neural Network Pruning with Combinatorial Optimization」は、ICML 2023で発表された論文で、事前学習済みニューラルネットワークの剪定において、スケーラビリティとパフォーマンスのトレードオフを考慮した最適化ベースのアプローチを開発した方法について説明しています。CHITA(「Combinatorial Hessian-free Iterative Thresholding Algorithm」の略)は、高次元統計、組合せ最適化、およびニューラルネットワークの剪定など、いくつかの分野の進歩を活用しています。たとえば、CHITAはResNetの剪定において最先端の手法よりも20倍から1000倍高速であり、多くの設定で精度を10%以上向上させることができます。 貢献の概要 CHITAには、人気のある手法に比べて2つの注目すべき技術的改善点があります:…
「ICML 2023でのGoogle」
Cat Armatoさんによる投稿、Googleのプログラムマネージャー Googleは、言語、音楽、視覚処理、アルゴリズム開発などの領域で、機械学習(ML)の研究に積極的に取り組んでいます。私たちはMLシステムを構築し、言語、音楽、視覚処理、アルゴリズム開発など、さまざまな分野の深い科学的および技術的な課題を解決しています。私たちは、ツールやデータセットのオープンソース化、研究成果の公開、学会への積極的な参加を通じて、より協力的なエコシステムを広範なML研究コミュニティと構築することを目指しています。 Googleは、40回目の国際機械学習会議(ICML 2023)のダイヤモンドスポンサーとして誇りに思っています。この年次の一流学会は、この週にハワイのホノルルで開催されています。ML研究のリーダーであるGoogleは、今年の学会で120以上の採択論文を持ち、ワークショップやチュートリアルに積極的に参加しています。Googleは、LatinX in AIとWomen in Machine Learningの両ワークショップのプラチナスポンサーでもあることを誇りに思っています。私たちは、広範なML研究コミュニティとのパートナーシップを拡大し、私たちの幅広いML研究の一部を共有することを楽しみにしています。 ICML 2023に登録しましたか? 私たちは、Googleブースを訪れて、この分野で最も興味深い課題の一部を解決するために行われるエキサイティングな取り組み、創造性、楽しさについてさらに詳しく知ることを願っています。 GoogleAIのTwitterアカウントを訪れて、Googleブースの活動(デモやQ&Aセッションなど)について詳しく知ることができます。Google DeepMindのブログでは、ICML 2023での技術的な活動について学ぶことができます。 以下をご覧いただき、ICML 2023で発表されるGoogleの研究についてさらに詳しくお知りください(Googleの関連性は太字で表示されます)。 理事会および組織委員会 理事会メンバーには、Corinna Cortes、Hugo Larochelleが含まれます。チュートリアルの議長には、Hanie Sedghiが含まれます。 Google…
VoAGIニュース、7月12日:ChatGPTに関する5つの無料コース • チェーンオブスロートプロンプティングの力
先週の出来事:ChatGPTの無料コース5つ • 連鎖思考プロンプティングの力 • その他多数!
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.