Learn more about Search Results Sayak Paul
- You may be interested
- 機械学習でパワーアップした顧客サービス
- 「頻度をより頻繁に使用する」
- 「AIが執筆プロセスに民主化をもたらして...
- 「もっとゲーム、もっと勝利:6ヶ月のGeFo...
- 合成時系列データ生成としてのLLM
- 「集団行動のデコード:アクティブなベイ...
- マイクロソフトのデータサイエンスとAIの...
- 地図の課題に挑む:「#30DayMapChallenge...
- ストラテゴをマスターする:情報の不完全...
- なぜシリコンバレーは人工知能の拠点とな...
- 「LLMファインチューニングにおけるPEFTテ...
- 「インフレクションは、世界で最高のAIモ...
- TIIのFalcon 180B基本モデルは、Amazon Sa...
- トムソン・ロイターが6週間以内に開発した...
- Googleの研究者が新たな大規模言語モデル...
潜在一貫性LoRAsによる4つのステップでのSDXL
潜在的一貫性モデル(LCM)は、ステーブルディフュージョン(またはSDXL)を使用してイメージを生成するために必要なステップ数を減らす方法です。オリジナルモデルを別のバージョンに蒸留し、元の25〜50ステップではなく4〜8ステップ(少ない)だけを必要とするようにします。蒸留は、新しいモデルを使用してソースモデルからの出力を再現しようとするトレーニング手順の一種です。蒸留されたモデルは、小さく設計される場合があります(これがDistilBERTや最近リリースされたDistil-Whisperの場合)または、この場合のように実行に必要なステップ数を減らします。これは通常、膨大な量のデータ、忍耐力、およびいくつかのGPUが必要な長時間かかる高コストのプロセスです。 それが今日までの現状でした! 私たちは、Stable DiffusionとSDXLを、まるでLCMプロセスを使用して蒸留されたかのように、速くする新しい方法を発表できることを喜ばしく思います!3090で7秒の代わりに約1秒、Macで10倍速くSDXLモデルを実行する、というのはどうですか?詳細は以下をご覧ください! 目次 メソッドの概要 なぜこれが重要なのか SDXL LCM LoRAsによる高速推論 品質の比較 ガイダンススケールとネガティブプロンプト 品質 vs. ベースのSDXL 他のモデルとのLCM LoRAs フルディフューザーズの統合 ベンチマーク 今日リリースされたLCM LoRAsとモデル ボーナス:通常のSDXL LoRAsとの組み合わせ LCM…
AudioLDM 2, でも速くなりました ⚡️
AudioLDM 2は、Haohe Liuらによる「AudioLDM 2: Learning Holistic Audio Generation with Self-supervised Pretraining」で提案されました。AudioLDM 2は、テキストプロンプトを入力として受け取り、対応するオーディオを予測します。リアルな音効、人の声、音楽を生成することができます。 生成されるオーディオは高品質ですが、元の実装での推論の実行は非常に遅いです。10秒のオーディオサンプルを生成するのに30秒以上かかります。これは、深いマルチステージのモデリングアプローチ、大きなチェックポイントサイズ、最適化されていないコードなど、複数の要素の組み合わせによるものです。 このブログ記事では、Hugging Faceの🧨 Diffusersライブラリを使用してAudioLDM 2を使用する方法を紹介し、半精度、フラッシュアテンション、コンパイルなどのコードの最適化、スケジューラの選択、ネガティブプロンプティングなどのモデルの最適化を探求します。その結果、推論時間を10倍以上短縮でき、出力オーディオの品質の低下は最小限です。ブログ記事には、コードはすべて含まれていますが、説明は少なめです。 最後まで読んでください。わずか1秒で10秒のオーディオサンプルを生成する方法がわかります! モデルの概要 Stable Diffusionに触発され、AudioLDM 2はテキストからオーディオへの潜在的な拡散モデル(LDM)であり、テキストの埋め込みから連続的なオーディオ表現を学習します。 全体の生成プロセスは以下のように要約されます: テキスト入力x\boldsymbol{x}xを与えると、2つのテキストエンコーダーモデルが使用され、テキストの埋め込みが計算されます:CLAPのテキストブランチとFlan-T5のテキストエンコーダー…
「CVPR 2023のメモ」
「私は運良く2023年6月18日から22日まで、バンクーバーのバンクーバーコンベンションセンターで開催されたコンピュータビジョンとパターン認識の第一級学会であるCVPRに参加することができましたそこでは...」
CVPR 2023におけるGoogle
Googleのプログラムマネージャー、Shaina Mehtaが投稿しました 今週は、バンクーバーで開催される最も重要なコンピュータビジョンとパターン認識の年次会議であるCVPR 2023の始まりを迎えます(追加のバーチャルコンテンツもあります)。Google Researchはコンピュータビジョンの研究のリーダーであり、プラチナスポンサーであり、メインカンファレンスで約90の論文が発表され、40以上のカンファレンスワークショップやチュートリアルに積極的に参加しています。 今年のCVPRに参加する場合は、是非、ブースに立ち寄って、最新のマシンパーセプションの様々な分野に応用するための技術を積極的に探求している研究者とお話ししてください。弊社の研究者は、MediaPipeを使用したオンデバイスのMLアプリケーション、差分プライバシーの戦略、ニューラル輝度場技術など、いくつかの最近の取り組みについても話し、デモを行います。 以下のリストでCVPR 2023で発表される弊社の研究についても詳しくご覧いただけます(Googleの所属は太字で表示されています)。 理事会と組織委員会 シニアエリアチェアには、Cordelia Schmid、Ming-Hsuan Yangが含まれます。 エリアチェアには、Andre Araujo、Anurag Arnab、Rodrigo Benenson、Ayan Chakrabarti、Huiwen Chang、Alireza Fathi、Vittorio Ferrari、Golnaz Ghiasi、Boqing Gong、Yedid Hoshen、Varun Jampani、Lu…
私の個人的なコパイロット:自分自身のコーディングアシスタントをトレーニングする
プログラミングとソフトウェア開発の常に進化する風景において、効率と生産性の追求は非凡なイノベーションにつながってきました。そのようなイノベーションの一つが、Codex、StarCoder、そしてCode Llamaといったコード生成モデルの登場です。これらのモデルは、人間のようなコードの断片を生成する能力を示し、コーディングアシスタントとしての無限の潜在能力を持っています。 しかし、これらの事前学習済みモデルは、さまざまなタスクにおいて印象的なパフォーマンスを発揮する一方で、まだまだ未来に待ち受けている魅力的な可能性も存在します。それは、特定のニーズに合わせてコード生成モデルをカスタマイズできる能力です。エンタープライズスケールで活用できる個人別のコーディングアシスタントを想像してみてください。 このブログ投稿では、私たちがどのようにHugCoder 🤗を作成したかを紹介します。HugCoderは、huggingface GitHubの公開リポジトリからのコード内容に対して、コードLLMでファインチューニングを行ったものです。データの収集ワークフローやトレーニング実験、興味深い結果についても話します。これにより、プロプライエタリなコードベースに基づいた独自のパートナーを作成することができます。さらなるこのプロジェクトの拡張のアイデアもいくつかご提案します。 では、始めましょう 🚀 データ収集のワークフロー 私たちが望むデータセットは、概念的にはシンプルで、次のような構造になっています。 Githubからのコード内容のスクレイピングは、PythonのGitHub APIを用いれば簡単です。ただし、リポジトリの数やリポジトリ内のコードファイルの数に応じて、APIのレート制限に達する可能性があります。 そのような問題を防ぐために、私たちは公開リポジトリをすべてローカルにクローンし、APIではなくそれらからコンテンツを抽出することにしました。ダウンロードスクリプトでは、Pythonのmultiprocessingモジュールを使用して、すべてのリポジトリを並列にダウンロードしました。詳細な実装については、このダウンロードスクリプトを参照してください。 リポジトリにはしばしば画像やプレゼンテーションなどの非コードファイルが含まれていますが、私たちはそれらをスクレイピングすることには興味がありません。これらを除外するために、拡張子のリストを作成しました。Jupyter Notebook以外のコードファイルを解析するために、私たちは単純に「utf-8」エンコーディングを使用しました。ノートブックの場合は、コードセルのみを考慮しました。 また、コードと直接関係のないファイルパスはすべて除外しました。これには、.git、__pycache__、およびxcodeprojなどが含まれます。 このコンテンツのシリアライズを比較的メモリにやさしいものにするために、私たちはチャンキングとfeather形式を使用しました。フルの実装については、こちらのスクリプトを参照してください。 最終的なデータセットは、Hubで利用可能であり、以下のような見た目をしています: このブログでは、stargazersに基づいて、Hugging Faceの最も人気のある10つのパブリックリポジトリを考慮しました。それらは次のとおりです: [‘transformers’, ‘pytorch-image-models’, ‘datasets’, ‘diffusers’,…
効率的で安定した拡散微調整のためのLoRAの使用
LoRA:Large Language Modelsの低ランク適応は、Microsoftの研究者によって導入された新しい技術で、大規模言語モデルの微調整の問題に取り組むためのものです。GPT-3などの数十億のパラメータを持つ強力なモデルは、特定のタスクやドメインに適応させるために微調整することが非常に高価です。LoRAは、事前学習済みモデルの重みを凍結し、各トランスフォーマーブロックにトレーニング可能な層(ランク分解行列)を注入することを提案しています。これにより、トレーニング可能なパラメータとGPUメモリの要件が大幅に削減されます。なぜなら、ほとんどのモデルの重みの勾配を計算する必要がないからです。研究者たちは、大規模言語モデルのトランスフォーマーアテンションブロックに焦点を当てることで、LoRAと完全なモデルの微調整と同等の品質を実現できることを発見しました。さらに、LoRAはより高速で計算量が少なくなります。 DiffusersのためのLoRA 🧨 LoRAは、当初大規模言語モデルに提案され、トランスフォーマーブロック上でデモンストレーションされたものですが、この技術は他の場所でも適用することができます。Stable Diffusionの微調整の場合、LoRAは画像表現とそれらを説明するプロンプトとの関連付けを行うクロスアテンションレイヤーに適用することができます。以下の図(Stable Diffusion論文から引用)の詳細は重要ではありませんが、黄色のブロックが画像とテキスト表現の関係を構築する役割を担っていることに注意してください。 私たちの知る限りでは、Simo Ryu(@cloneofsimo)がStable Diffusionに適応したLoRAの実装を最初に考案しました。興味深いディスカッションや洞察がたくさんあるGitHubのプロジェクトをご覧いただくために、彼らのGitHubプロジェクトをぜひご覧ください。 クロスアテンションレイヤーにLoRAトレーニング可能行列を深く注入するために、以前はDiffusersのソースコードを工夫(しかし壊れやすい方法)してハックする必要がありました。Stable Diffusionが私たちに示してくれたことの一つは、コミュニティが常に創造的な目的のためにモデルを曲げて適応する方法を見つけ出すことです。クロスアテンションレイヤーを操作する柔軟性を提供することは、xFormersなどの最適化技術を採用するのが容易になるなど、他の多くの理由で有益です。Prompt-to-Promptなどの創造的なプロジェクトには、これらのレイヤーに簡単にアクセスできる方法が必要です。そのため、ユーザーがこれを行うための一般的な方法を提供することにしました。私たちは昨年12月末からそのプルリクエストをテストしており、昨日のdiffusersリリースと共に公式にローンチしました。 私たちは@cloneofsimoと協力して、Dreamboothと完全な微調整方法の両方でLoRAトレーニングサポートを提供しています!これらの技術は次の利点を提供します: 既に議論されているように、トレーニングがはるかに高速です。 計算要件が低くなります。11 GBのVRAMを持つ2080 Tiで完全な微調整モデルを作成できました! トレーニングされた重みははるかに小さくなります。元のモデルが凍結され、新しいトレーニング可能な層が注入されるため、新しい層の重みを1つのファイルとして保存できます。そのサイズは約3 MBです。これは、UNetモデルの元のサイズの約1000分の1です。 私たちは特に最後のポイントに興奮しています。ユーザーが素晴らしい微調整モデルやドリームブーストモデルを共有するためには、最終モデルの完全なコピーを共有する必要がありました。それらを試すことを望む他のユーザーは、お気に入りのUIで微調整された重みをダウンロードする必要があり、膨大なストレージとダウンロードコストがかかります。現在、Dreamboothコンセプトライブラリには約1,000のDreamboothモデルが登録されており、おそらくさらに多くのモデルがライブラリに登録されていません。 LoRAを使用することで、他の人があなたの微調整モデルを使用できるようにするためのたった1つの3.29 MBのファイルを公開することができるようになりました。 (@mishig25への感謝、普通の会話で「dreamboothing」という動詞を使った最初の人です)。…
Instruction-tuning Stable Diffusion with InstructPix2PixのHTMLを日本語に翻訳してください
この投稿では、安定拡散を教えるための指示調整について説明します。この方法では、入力画像と「指示」(例:自然画像に漫画フィルタを適用する)を使用して、安定拡散を促すことができます。 ユーザーの指示に従って安定拡散に画像編集を実行させるアイデアは、「InstructPix2Pix: Learning to Follow Image Editing Instructions」で紹介されました。InstructPix2Pixのトレーニング戦略を拡張して、画像変換(漫画化など)や低レベルな画像処理(画像の雨除去など)に関連するより具体的な指示に従う方法について説明します。以下をカバーします: 指示調整の紹介 この研究の動機 データセットの準備 トレーニング実験と結果 潜在的な応用と制約 オープンな問い コード、事前学習済みモデル、データセットはこちらで見つけることができます。 導入と動機 指示調整は、タスクを解決するために言語モデルに指示を従わせる教師ありの方法です。Googleの「Fine-tuned Language Models Are Zero-Shot Learners (FLAN)」で紹介されました。最近では、AlpacaやFLAN V2などの作品が良い例であり、指示調整がさまざまなタスクにどれだけ有益であるかを示しています。…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.