Learn more about Search Results SVM
- You may be interested
- 「Matplotlibでカラーマップをカスタマイ...
- 「ケンブリッジの研究者たちは、機械学習...
- 生産性のパラノイアを打破する:Microsoft...
- このUCLAのAI研究によると、大規模な言語...
- 「物理情報を持つニューラルネットワーク...
- 「Arxiv検索のマスタリング:Haystackを使...
- 3Dインスタンスセグメンテーションにおけ...
- 画像認識とコンピュータビジョン:違いは...
- 「Llama 2の機能を実世界のアプリケーショ...
- フリーユーについて紹介します:追加のト...
- 「Auto-GPT&GPT-Engineer:今日の主要なA...
- すべてのMicrosoftとODSCの提携オファリング
- 韓国のこの人工知能(AI)論文では、FFNeR...
- 「気をつけるべき3つのサイレントなパンダ...
- 「拡散モデルの助けを借りて、画像間の補...
「サポートベクターマシン(SVM)とは何ですか?」
サポートベクターマシン(SVM)は、機械学習の分野で利用される教師あり学習アルゴリズムです。主に分類や回帰などのタスクを実行するために使用されます。このアルゴリズムは、メールがスパムかどうかの判断、手書き文字の認識、写真での顔の検出など、さまざまなタスクを処理できます。データ内の多くの情報や複雑な関係に対応できる非常に適応性のあるアルゴリズムです。 SVMの主な役割は、特徴に基づいて異なるグループの間を最適な線(または面)で分離することです。データが紙の上の点のようなもので、それらを完全に異なるクラスに分けるための単一の直線を引くことができると想像してください。これは、データが完全に線形に分離可能である必要があります。 SVMの種類 線形サポートベクターマシン データが直線を使用して簡単に2つのグループに分割できる場合、線形SVMが最適です。データが紙の上の点のようなもので、1本の直線を引いてそれらをきれいに2つの異なるクラスに分離できる状態であることを想像してください。 非線形サポートベクターマシン データが直線を使用して2つの別々のグループに分類できない場合、非線形SVMを使用します。ここでは、データは線形に分離できません。このような場合には、非線形SVMが救世主となります。データが複雑なパターンに従わずにしばしば乱雑な現実世界では、非線形SVMのカーネルトリックが使用されます。 どのように動作するのか? 床に散らばった2つのグループ、例えば緑と青の点があると想像してください。SVMの役割は、これらの点をそれぞれのグループに分けるための最適な線(または3次元の世界では面)を見つけ出すことです。 今、点を分けるための多くの線があるかもしれませんね?しかし、SVMは特別な線を探します。すなわち、線と最も近い緑の点から線までの距離と線と最も近い青の点から線までの距離が最大となる線です。この距離を「マージン」と呼び、SVMはできるだけ大きくすることを目指します。 この線を定義するのに重要な役割を果たす最も近い点を「サポートベクター」と呼びます。SVMは、2つのグループの間のスペースを最大化する最良の線を描くためにこれに焦点を当てます。 しかし、もし点がきれいに直線で分離されていない場合はどうでしょうか?もし点があちこちに散らばっている場合はどうでしょうか?そんなときに、SVMは問題を高次元空間に持ち上げるために「カーネルトリック」と呼ばれるものを使用することができます。これにより、より複雑な分割曲線や曲面を引くことが可能になります。 用途とアプリケーション 1. スパムメールフィルタリング: スパムと普通のメールが混在するメールボックスがあると想像してください。SVMを使用して、スパムと通常のメールを区別するスマートフィルターを作成できます。使用される単語などのメールの様々な特徴を見て、スパムと非スパムを区別する境界線を描き、メールボックスをきれいに保ちます。 2. 手書き文字認識: コンピュータが異なる人々の手書き文字を認識することを希望する場合、SVMが役立ちます。手書き文字の形や大きさなどの特徴を分析することで、SVMは一人の人の手書き文字を別の人のものと分離する線や曲線を描くことができます。これは郵便サービスでの数字認識などのアプリケーションに役立ちます。 3. 医療診断: 医学の世界では、SVMは疾患の診断に役立ちます。ある特定の状態の患者とその他の一般の患者についてのデータがあるとします。SVMは様々な健康指標を分析し、健康な患者と状態を持つ患者を区別する境界線を作成します。これにより、医師がより正確な診断を行うのに役立ちます。 4. 画像分類:…
「Pythonで簡単に実装するマルチクラスSVM」
この物語では、一般的なソフトマージンとカーネル化された形式でサポートベクターマシンの学習アルゴリズムを実装しますSVMの概要とトレーニング方法について簡単に説明し始めます...
SVMの最適化:プライマルとデュアル形式
サポートベクターマシンまたはSVMSVMの双対形と原始形最適化ラグランジュ乗数、KKT条件、カーネルトリック、座標上昇アルゴリズム
「注目メカニズムの解読:トランスフォーマーモデルにおける最大幅解法に向けて」
アテンションメカニズムは、自然言語処理と大規模な言語モデルにおいて重要な役割を果たしてきました。アテンションメカニズムによって、トランスフォーマーデコーダは入力シーケンスの最も関連性の高い部分にフォーカスすることができます。このメカニズムは、入力トークン間のソフトマックス類似度を計算し、アーキテクチャの基礎的なフレームワークとしての役割を果たすことで、重要な役割を果たしています。ただし、アテンションメカニズムによってモデルが最も関連性の高い情報に集中することができることはよく知られていますが、この最も関連性の高い入力部分にフォーカスするプロセスの複雑性や具体的なメカニズムはまだ不明です。 そのため、アテンションメカニズムを理解するためには多くの研究が行われています。ミシガン大学の研究チームによる最近の研究では、トランスフォーマーモデルが使用するメカニズムを探求しています。研究者たちは、トランスフォーマーが多くの人気のあるチャットボットのバックボーンアーキテクチャである隠れ層を利用して、サポートベクターマシン(SVM)に似たアテンションメカニズムを利用していることを発見しました。これらの分類器は、データ内の境界を引くことで2つのカテゴリー(関連する情報と関連しない情報)を識別するために学習します。 研究者たちは、トランスフォーマーがデータを関連する情報と関連しない情報に分類するために、サポートベクターマシン(SVM)に似た昔ながらの手法を利用していることを強調しています。例えば、チャットボットに対して長い記事の要約を依頼する場合を考えてみましょう。トランスフォーマーはまずテキストをトークンと呼ばれる小さな部分に分割します。そして、対話中にアテンションメカニズムは各トークンに重みを割り当てます。テキストの分割や重みの割り当ては反復的に行われ、進化する重みに基づいて応答を予測し形成します。 会話が進むにつれて、チャットボットは全体の対話を再評価し、重みを調整し、繊細なコヒーレントな文脈に基づいた返答を行います。要するに、トランスフォーマーのアテンションメカニズムは多次元の数学を実行します。この研究は、アテンションメカニズム内での情報検索の基本的なプロセスを説明しています。 この研究は、トランスフォーマーアーキテクチャ内のアテンションメカニズムがどのように機能するかを理解するための重要な一歩です。この研究は、長く複雑なテキスト入力に対してチャットボットがどのように応答するかの謎を解明しました。この研究に基づいて、大規模な言語モデルをより効率的かつ解釈可能にすることができる可能性があります。研究者たちは、この研究の結果を利用してAIの効率とパフォーマンスを向上させることを目指しており、NLPや関連分野においてアテンションメカニズムを洗練させる可能性が開かれています。 まとめると、この研究はアテンションメカニズムの動作について議論し、解明するだけでなく、効果的かつ解釈可能なAIモデルの将来的な開発にも希望を抱かせます。アテンションメカニズムがSVMのようなメカニズムを適用していることを示すことで、自然言語処理の分野での進歩だけでなく、アテンションが重要な役割を果たす他のAIアプリケーションの進歩も約束しています。
自然言語処理:AIを通じて人間のコミュニケーションの力を解き放つ
この記事では、NLPの理解と進化について取り上げますAIがコミュニケーションの世界にどのように貢献できるかを学びましょう
「アウトライア検出手法の比較」
外れ値検出は、与えられたデータセット内の異常値(珍しい観測値)を特定するための教師なしの機械学習タスクですこのタスクは、私たちの利用可能なデータが多い現実世界のケースで役立ちます…
「高次元におけるデータの驚くべき挙動」
リチャード・ファインマンという有名な物理学者はかつて、「量子力学を理解している人なんていない」と述べていました彼のインタビュー「リチャード・ファインマンと一緒に想像しよう」という題名の中で彼は触れました
『Amazon SageMaker を使用して、Talent.com の ETL データ処理を効率化する』
この投稿では、Talent.comでの求人推薦モデルのトレーニングと展開のために開発したETLパイプラインについて説明します当社のパイプラインは、大規模なデータ処理と特徴抽出のためにSageMaker Processingジョブを使用して効率的なデータ処理を行います特徴抽出コードはPythonで実装されており、一般的な機械学習ライブラリを使用してスケーラブルな特徴抽出を行うため、コードをPySparkを使用する必要はありません
「Pythonを使用したアンダーサンプリング手法」
この記事では、データの不均衡に対処するためのアンダーサンプリングデータ前処理技術について議論しています
「エキスパートのミックスについて解説」
ミクストラル8x7Bのリリース(発表、モデルカード)により、トランスフォーマのクラスがオープンAIコミュニティで最も話題となっています。それがエキスパートの混合(Mixture of Experts、略してMoEs)です。このブログ記事では、MoEsの構成要素、トレーニング方法、および推論時の考慮事項について見ていきます。 さあ、深く掘り下げてみましょう! 目次 ミクストラルとは何ですか? MoEsの簡潔な歴史 スパース性とは何ですか? MoEsのトークンのロードバランシング MoEsとトランスフォーマ スイッチトランスフォーマ ルータZ損失によるトレーニングの安定化 エキスパートは何を学ぶのですか? エキスパートの数をスケーリングすると事前トレーニングにどのような影響を与えるのですか? MoEsの微調整 スパースMoEsと密なモデルの使用時期はいつですか? MoEsを効果的に活用するために エキスパート並列処理 能力係数と通信コスト サービングテクニック 効率的なトレーニング オープンソースのMoEs ワークのエキサイティングな方向性 いくつかのリソース…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.