Learn more about Search Results SIMD

「RustコードのSIMD高速化のための9つのルール(パート2)」

SIMDを使用してRustコードを高速化するための9つの基本ルールを探求してくださいcoresimdについて学び、最適化技術を学びながらパフォーマンスを7倍に向上させましょう

「RustコードのSIMDアクセラレーションのための9つのルール(パート1)」

「SIMDを使用してRustコードを高速化するための9つの基本ルールを探索してくださいcoresimd、最適化テクニック、およびパフォーマンスを7倍に向上させる方法を学びましょう」

クライテリオンを使用したRustコンパイラの設定のベンチマーキング

この記事では、まず、人気のある基準箱を使用してベンチマークする方法について説明します次に、コンパイラの設定を横断してベンチマークする方法について追加情報を提供します各組み合わせについて…

「QLoRAを使ってLlama 2を微調整し、AWS Inferentia2を使用してAmazon SageMakerに展開する」

この記事では、パラメータ効率の良いファインチューニング(PEFT)手法を使用してLlama 2モデルを微調整し、AWS Inferentia2上でファインチューニングされたモデルを展開する方法を紹介します AWS Neuronソフトウェア開発キット(SDK)を使用してAWS Inferentia2デバイスにアクセスし、その高性能を活用しますその後、[…]の動力を得るために、大きなモデル推論コンテナを使用します

『UltraFastBERT:指数関数的に高速な言語モデリング』

言語モデルと生成型AIは、その能力で有名であり、AI業界では注目されている話題です世界中の研究者たちは、効果と能力を向上させていますこれらのシステムは、通常、深層学習モデルであり、広範なラベル付きデータで事前学習され、自己注意のためのニューラルネットワークを組み込んでいますフィードフォワード、再帰、埋め込み、注意の各種レイヤーを使用して、入力テキストを処理し、[...]を生成します

「GoとMetalシェーディング言語を通じてAppleのGPUをプログラミングする」

以下では、GoとネイティブCの間でcgoを使用してインターフェースを作成するプロセス、これを使用してAppleのMetal Performance ShadersフレームワークのObjective-Cバインディングとインターフェースを作成する方法について説明します

PythonでのZeroからAdvancedなPromptエンジニアリングをLangchainで

大規模言語モデル(LLM)の重要な要素は、これらのモデルが学習に使用するパラメータの数ですモデルが持つパラメータが多いほど、単語やフレーズの関係をより理解することができますつまり、数十億のパラメータを持つモデルは、さまざまな創造的なテキスト形式を生成し、開放的な質問に回答する能力を持っています

Hugging FaceとGraphcoreがIPU最適化されたTransformersのために提携

2021年AIハードウェアサミットでの発表により、Hugging Faceはデバイス最適化モデルやソフトウェア統合を含む新しいハードウェアパートナープログラムの開始を発表しました。ここでは、Intelligence Processing Unit(IPU)を開発したGraphcoreがプログラムの創設メンバーであり、Hugging Faceとのパートナーシップにより開発者が最新のTransformerモデルを簡単に高速化できるよう具体的な説明をしています。 GraphcoreとHugging Faceは、機械知能のパワーを利用するイノベーターにとって、手を取り合って作業を容易にするという共通の目標を持つ2つの企業です。 Hugging Faceのハードウェアパートナープログラムにより、Graphcoreシステムを使用して最新のTransformerモデルを展開し、Intelligence Processing Unit(IPU)に最適化されたモデルを最小限のコーディング複雑さで本番規模で使用することができます。 Intelligence Processing Unitとは何ですか? IPUは、GraphcoreのIPU-PODデータセンター計算システムを駆動するプロセッサです。この新しいタイプのプロセッサは、AIや機械学習の非常に特定の計算要件をサポートするように設計されています。細かい粒度の並列処理、低精度演算、スパース性の処理能力などがシリコンに組み込まれています。 GPUのようなSIMD/SIMTアーキテクチャを採用するのではなく、GraphcoreのIPUは大規模な並列処理を行うMIMDアーキテクチャを使用し、プロセッサコアの隣に超高帯域幅メモリをシリコンダイ上に配置しています。 この設計により、BERTやEfficientNetなどの最も人気のあるモデルや次世代のAIアプリケーションを実行する際に、高いパフォーマンスと新しいレベルの効率を実現します。 ソフトウェアは、IPUの機能を引き出す上で重要な役割を果たしています。GraphcoreのPoplar SDKは、Graphcoreの創設以来プロセッサと共同設計されています。現在は、PyTorchやTensorFlowなどの標準の機械学習フレームワーク、およびDockerやKubernetesなどのオーケストレーションや展開ツールと完全に統合されています。 広く使用されているこれらのサードパーティシステムとの互換性を持つようにPoplarを作成することで、開発者は他の計算プラットフォームからモデルを簡単に移植し、IPUの高度なAI機能を利用できるようになります。 本番向けのTransformerの最適化 Transformerは、AIの分野を完全に変革しました。CamemBERT(フランス語)からNLPの知見をコンピュータビジョンに適用するViTまで、Hugging Faceではさまざまなアプリケーションで広く使用されています。これらのマルチタレントモデルは、特徴抽出、テキスト生成、感情分析、翻訳など、さまざまな機能を実行できます。 すでに、Hugging…

モダンなCPU上でのBERTライクモデルの推論のスケーリングアップ – パート2

イントロダクション:CPU上でのAI効率を最適化するためのIntelソフトウェアの使用 前のブログ記事で詳細に説明したように、Intel Xeon CPUは、AVX512やVNNI(Vector Neural Network Instructions)などのAIワークロードに特に設計された機能を提供しており、整数量子化されたニューラルネットワークを使用した効率的な推論をサポートするための追加のシステムツールも提供しています。このブログ記事では、ソフトウェアの最適化に焦点を当て、Intelの新しいIce Lake世代のXeon CPUのパフォーマンスについて紹介します。私たちの目標は、Intelのハードウェアを最大限に活用するためにソフトウェア側で利用可能なものをすべて紹介することです。前のブログ記事と同様に、ベンチマークの結果とグラフとともに、これらのツールと機能を簡単に使用できるようにします。 4月にIntelは最新のIntel Xeonプロセッサ、コードネームIce Lakeを発売しました。これはより効率的で高性能なAIワークロードをターゲットにしています。具体的には、Ice Lake Xeon CPUは、以前のCascade Lake Xeonプロセッサと比較して、さまざまなNLPタスクで最大75%高速な推論が可能です。これは、新しいSunny Coveアーキテクチャ上での新しい命令やPCIe 4.0のようなハードウェアおよびソフトウェアの改善の組み合わせによって実現されています。最後になりますが、Intelは、IntelのExtension for Scikit Learn、Intel TensorFlow、Intel PyTorch…

JavaScriptを使用してOracleデータベース内からHugging Face AIを呼び出す方法

JavaScriptとオープンソースを使用して完全に無料でAIアーキテクチャを最適化し、SQL、JSON、またはRESTを使用して同じデータにアクセスしてください

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us