Learn more about Search Results RoboCat

DeepMind RoboCat:自己学習ロボットAIモデル

世界的に有名なAI研究所であるDeepMindは、ロボットアームの様々なモデルを使用して幅広い複雑なタスクを実行できるAIモデルRoboCatを発表しました。以前のモデルとは異なり、RoboCatは複数のタスクを解決し、異なる現実世界のロボットにシームレスに適応する能力があります。この素晴らしい成果の詳細について掘り下げ、RoboCatがロボティクスの分野を革新する方法を探ってみましょう。 また読む:Amazonの秘密の家庭用AIロボットは何でもできます 多機能なRoboCat:ロボティックインテリジェンスの飛躍 DeepMindの画期的なAIモデルRoboCatは、ロボティクスの多様性に前例のないレベルを示しています。DeepMindの研究者であるAlex Leeによると、RoboCatは複数の現実的なロボットの具現化にわたって多様なタスクに取り組むことができる単一の大型モデルです。つまり、モデルは新しいタスクや異なるロボット構成に迅速に適応することができます。これはロボティクスの分野において重要なマイルストーンとなります。 また読む:スパイダーマンになるAIロボットアーム「自在アーム」 GATOからインスピレーションを得て:テキストからロボティックスへ RoboCatは、DeepMindが開発した別のAIモデルであるGATOからインスピレーションを得ています。GATOはテキスト、画像、イベントを分析して応答する驚異的な能力を持っています。DeepMindの研究者は、この概念を活用して、シミュレーション環境と現実のロボティクス環境から収集した画像とアクションデータからなる大規模データセットでRoboCatをトレーニングしました。 強力なRoboCatをトレーニングする RoboCatをトレーニングするため、DeepMindのチームは、人間が制御するロボットアームによって実行されるさまざまなタスクの100〜1,000のデモンストレーションを収集しました。これらのデモンストレーションは、特定のタスクに対してモデルを微調整し、専門の「スピンオフ」モデルを作成するための基盤となりました。各スピンオフモデルは、各タスクについて平均10,000回の練習を行いました。 また読む:世界初のAIパワードアーム:知っておくべきすべて 限界を突破する:RoboCatのポテンシャルを解き放つ RoboCatの最終バージョンは、合計253のタスクでトレーニングされ、これらのタスクの141のバリエーションでベンチマークが行われ、シミュレーションされた場合と現実世界のシナリオの両方を含んでいます。DeepMindは、モデルが数時間の人間が制御するデモンストレーションを1,000回観察した後、異なるロボットアームを操作する方法を成功裏に学んだと報告しています。しかし、成功率は異なり、タスクによって13%から99%まで幅広く、デモンストレーションの数が決定的な要因となります。 また読む:AlphabetがFlowstateを解き放つ:誰でも使えるロボットアプリ開発プラットフォーム 新しいフロンティアを開拓する:ロボティクスを再定義する 成功率が異なるにもかかわらず、DeepMindは、RoboCatが新しいタスクを解決するためのバリアを下げる可能性があると考えています。Alex Leeは、新しいタスクのデモンストレーションの数が限られていても、RoboCatを微調整し、パフォーマンスをさらに向上させることができると説明しています。究極の目標は、RoboCatに新しいタスクを教えるために必要なデモンストレーションの数を10以下に減らすことで、ロボティクスの分野を革新することです。 また読む:Sanctuary AIのPhoenix RobotとTeslaの最新発売、Optimusに会ってください! 私たちの意見 DeepMindのRoboCatは、ロボティクスの分野における重大な突破口を表しています。1つのAIモデルが、複数のタスクや異なるロボットの具現化にわたって適応し、優れた性能を発揮することができることを示しています。大規模なデータセットでのトレーニングと微調整のパワーを活用することで、RoboCatは将来の進歩の基盤を築きました。ロボットに新しいタスクを教えるプロセスを効率化する可能性があるRoboCatは、革新の新時代をもたらすかもしれません。RoboCatが最小限の人間の介入でシームレスに適応し、学習する未来を切り拓くには、エキサイティングな時代が待っています。

多種多様なロボットタイプ間での学習のスケーリングアップ

私たちは、様々なロボットタイプや具現化における総合ロボット学習のための新しいリソースセットをリリースします34の学術研究所のパートナーと共に、22種類の異なるロボットタイプのデータをまとめ集め、オープンなX-具現化データセットを作成しましたまた、RT-1から派生したロボティクストランスフォーマー(RT)モデルであるRT-1-Xもリリースしますこのモデルは、私たちのデータセットで訓練され、多くのロボット具現化間でスキルの移転を示します

ロボキャット:自己改善型ロボティックエージェント

ロボットは私たちの日常生活の一部として急速になっていますが、彼らはしばしば特定のタスクをうまく実行するためにのみプログラムされています最近のAIの進歩を活用することで、より多くの方法で助けることができるロボットが可能になるかもしれませんが、一般的な用途のロボットの構築には、現実世界のトレーニングデータを収集するために必要な時間の制約があり、進展が遅れています私たちの最新の論文では、自己改善型のAIエージェントであるロボキャットを紹介していますロボキャットは、異なるアームでさまざまなタスクを実行する方法を学び、その後、新しいトレーニングデータを自己生成して技術を向上させるのです

Google DeepMindは、ChatGPTを超えるアルゴリズムの開発に取り組んでいます

画期的な発表により、GoogleのDeepMind AI研究所のCEOであるデミス・ハサビス氏は、革新的なAIシステムであるGeminiの開発を発表しました。Geminiは、DeepMindが囲碁のゲームでの歴史的な勝利から導き出した技術を活用し、OpenAIのChatGPTを超える予定のアルゴリズムを持つことで、人工知能の分野で重要なマイルストーンを示すものです。この発表は、AIの未来における能力の向上と革新的な進展を約束するものであり、その詳細と将来への潜在的な影響について詳しく探っていきます。 Gemini:AI技術の次の飛躍 DeepMindの画期的なAIシステムであるGeminiは、人工知能の分野でのゲームチェンジャーとして登場しました。AlphaGoの驚異的な成果を基にしたGeminiは、DeepMindの先駆的な技術とGPT-4の言語能力を組み合わせることで、OpenAIのChatGPTの能力を超えるものとなっています。これらの強みの融合により、GeminiはAIの景観を再定義する有望なイノベーションとなっています。 強みの融合:AlphaGoとGPT-4のシナジー AlphaGoの強力な技法をGPT-4モデルに取り入れることで、Geminiは従来の言語モデルの制約を超越します。Geminiの言語能力と問題解決能力のユニークな組み合わせは、AIを革新することを約束します。DeepMindのCEOであるデミス・ハサビス氏は、テキストの理解と生成に優れたシステムが複雑な問題を計画し解決する能力を持つシステムを想像しています。 また読む:DeepMind CEOがAGIの実現が非常に近い可能性を示唆 革新の公開:Geminiの魅力的な特徴 Geminiは、AIの能力の限界を押し広げる多くの魅力的な特徴を導入する予定です。AlphaGoタイプのシステムと大規模な言語モデルの結合により、GeminiはAIの潜在能力の新たな時代をもたらします。DeepMindのエンジニアたちは、Gemini内のいくつかの興味深いイノベーションを示唆しており、公式のローンチに対する期待感をさらに高めています。 強化学習:AlphaGoの成功の基盤 画期的な強化学習技術は、AlphaGoの歴史的な勝利の中核にありました。DeepMindのソフトウェアは、繰り返しの試行とパフォーマンスに対するフィードバックを通じて、複雑な問題をマスターしました。さらに、AlphaGoはツリーサーチと呼ばれる方法を利用して、ボード上の潜在的な手を探索して記憶することができました。この基盤はGeminiの将来の発展の基礎となっています。 また読む:強化学習の包括的なガイド 進行中の旅:Geminiの開発 Geminiはまだ開発段階にありますが、ハサビス氏はその取り組みと投資の大きさを強調しています。DeepMindのチームは、Geminiを完成させるために数か月と膨大な資金(数千万ドルまたは数億ドルにもなる可能性があります)が必要となると推定しています。この取り組みの重要性は、Geminiの潜在的な影響の重要性を示しています。 競争に対抗する:Googleの戦略的な対応 OpenAIのChatGPTが注目を集める中、Googleは迅速に生成型AIを製品に統合し、チャットボットBardを導入し、AIを検索エンジンに組み込みました。GoogleはDeepMindとGoogleの主要なAI研究所であるBrainを統合してGoogle DeepMindを形成することで、ChatGPTによる競争の脅威に対処しようとしています。この戦略的な動きは、GoogleがAIのイノベーションの最前線にとどまることへの取り組みを示しています。 また読む:Chatgpt-4対Google Bard:ヘッドトゥヘッドの比較 DeepMindの旅:買収から驚嘆まで DeepMindの2014年のGoogleによる買収は、AI研究における転換点となりました。この会社の革新的なソフトウェアは強化学習によって駆動し、以前には想像もつかなかった能力を示しました。AlphaGoが2016年に囲碁のチャンピオン李世ドルに対して勝利を収めたことは、AIコミュニティを驚かせ、複雑なゲームにおける人間レベルの熟練度を達成するためのタイムラインに関する先入観に挑戦しました。 また読む:DeepMindのAIマスターゲーマー:2時間で26のゲームを学ぶ トランスフォーマーのトレーニング:大規模言語モデルの基盤…

SiMa.aiが世界最強のAIチップをインドに持ち込む

アメリカのAIチップスタートアップ、SiMa.aiは、初代AIチップの量産を発表し、画期的な進展を遂げました。TSMC 16nmテクノロジーを利用し、SiMa.aiは産業界にAI革命をもたらすことを目的としています。一般的な手法が一つのチップで全てを対応するのに対し、SiMa .aiのMLSoC(Chip on a Machine Learning System)はエッジコンピューティングに特化して設計されています。この重要な進展により、産業分野において転換期を迎えることになります。 同様に読まれている記事:台湾企業が現代AIのバックボーンになった経緯 AIと機械学習で産業界を21世紀に引き上げる 創設者兼CEOのKrishna Rangasayee氏は、AIと機械学習によって物理的な世界に大きな改善がもたらされる可能性に興奮しています。SiMa.aiは、最先端の技術で産業界を21世紀に導くことを目指しています。彼らのビジョナリーなアプローチは、スマートカー、ドローン、高度なロボットなど多岐にわたる分野での革新を促進することを目的としています。 同様に読まれている記事:DeepMind RoboCat: 自己学習型ロボットAIモデル SiMa.aiが生成AI埋め込みエッジの未来に備える Rangasayee氏は声明で、SiMa.aiが生成AI埋め込みエッジの未来に備えていることを明らかにしました。クラウド、エッジ、またはモバイル電話の空間で作業しているかどうかに関係なく、生成AIと大規模言語モデル(LLM)が誰の革新にとっても不可欠なものになると信じているRangasayee氏は、これらの技術を採用することの重要性を強調しました。SiMa.aiの生成AIを先駆的に推進する取り組みは、産業界を革新する先見性のあるアプローチを示しています。 埋め込みエッジスペースにおける生成AIの台頭 生成AIは、近年著しい進展を遂げ、現在は埋め込みエッジスペースへ進出しています。Rangasayee氏は、生成AIがエンタープライズやエッジアプリケーションを含む実世界のアプリケーションへ移行していることに興味を持っています。生成AIの認知度と採用の拡大に伴い、この技術の変革的なポテンシャルはますます明らかになっています。生成AIの影響は急速に拡大し、世界中の10億人を魅了し、産業を再構築しています。 詳しくはこちら:DataHack Summit 2023にて、Diffusion Modelsによる生成AIの無限の世界を学ぶ非凡な学習体験に参加してください。 AIエッジデバイス上でLLMを実行することは有望なトレンド…

DeepMindのロボキャットに会ってください:複数のロボットを操作するために設計された新しいAIモデル

ロボットは急速にメインストリーム文化に入りつつありますが、彼らは通常、彼らのプログラミングのために彼らの能力が制限されています。 最近のAIの進歩をロボットの設計に取り入れることの潜在的な利点にもかかわらず、一般的な目的のロボットを開発するための進展は、現実のトレーニングデータを取得するために必要な時間のために遅れています。 多くのタスクを一度に学習し、ヘルパーロボットの実用的な能力に言語モデルの理解を統合する能力を持つロボットの開発は、広範な研究の対象となっています。 DeepMindのRoboCatは、複数のタイプの実際のロボットでさまざまなタスクを解決し適応する最初のエージェントです。 調査結果によると、RoboCatは他の最先端のモデルよりもはるかに速く学習します。 多岐にわたるデータセットから学習するため、100回のデモンストレーションで新しいスキルを習得できます。 この能力は、多目的ロボットを開発するために重要であり、人間の監視されたトレーニング要件を減らすことにより、ロボット工学の研究を加速します。 彼らのマルチモーダルモデルGato(スペイン語で「猫」)は、RoboCatの基盤となっています。仮想世界と現実世界の両方で言葉、視覚、行動を処理できます。 彼らの作品では、何百ものロボットアームがさまざまな仕事をしているビジュアルと動作のデータを含む大規模なトレーニングデータセットとGatoの構造を融合させました。 この初期のトレーニングフェーズの後、チームはRoboCatを新しい活動の「自己改善」トレーニングサイクルに入れました。 各新しい活動は、以下の5つの段階で学習されました。 新しいタスクまたはロボットを人間が制御するロボットアームで100から1000の例を収集する。 新しいタスク/アームのためにRoboCatを微調整して、専門的な能力を持つスピンオフエージェントを生成する。 子のエージェントは、新しいタスク/アームに対して練習を10,000回繰り返し、トレーニングデータプールに追加する。 サンプルデータをユーザーの作成物およびデモンストレーションデータと混合して、RoboCatの現在のデータセットに統合する。 更新されたデータセットを使用してRoboCatを再トレーニングする。 RoboCatの最新バージョンは、数百万の軌跡を含むデータセットに基づいています。実際のおよびシミュレートされたロボットアームからのビジョンベースのデータ、および多数のロボットアームを使用して収集されたジョブを描くデータが含まれます。 RoboCatはわずか数時間で複数のロボットアームを使用するようにトレーニングされました。 彼は、二本爪のグリッパーを持つアームで教えられたにもかかわらず、より複雑な三本指のグリッパーを持つアームを使うことを学びました。 RoboCatは、1000人の人間が制御するデモンストレーションを目撃した後、歯車を86%の確率で拾うことができるようになりました。 同じ程度のデモにより、フルーツボウルから正しい果物を選ぶなど、精度と知識の両方が必要なタスクを実行する方法を学びました。 RoboCatのトレーニングは自律的に継続されます。 彼が学ぶほど、彼は学ぶ能力を向上させます。 チームは、各タスクの500のデモから学んだ後、RoboCatの最初のバージョンは、これまで見たことのない活動を実行するために36%しか効果的ではありませんでした。…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us