Learn more about Search Results ROC曲線

「MLを学ぶ勇気:F1、再現率、適合率、ROC曲線により深く掘り下げる」

「「勇気を持って機械学習を学ぶ」シリーズへようこそこのセッションでは、メトリクスの微妙な世界を探究しています多くの資料はこれらのメトリクスを紹介したり、詳しく取り上げたりしますが…」

「SageMakerキャンバスモデルリーダーボードを使用して、高度な設定を持つ機械学習モデルを構築し、評価します」

「Amazon SageMaker Canvas は、アナリストや市民データサイエンティストが、自身のビジネスニーズに合わせた正確な機械学習(ML)の予測を生成するためのノーコードの作業スペースです今日から、SageMaker Canvas は、アンサンブルまたはハイパーパラメータの最適化といった高度なモデルビルドの設定、トレーニングと検証データの分割比率のカスタマイズなどをサポートしています」

分類の評価指標:正確度を超えて

この記事では、特に分類タスクの場合において、正確性がモデルのパフォーマンスを評価するための最良の指標ではない理由について論じ、その後で紹介します...

「深層学習モデルの可視化方法」

ディープラーニングモデルは通常非常に複雑です多くの伝統的な機械学習モデルが数百のパラメータで済むことがありますが、ディープラーニングモデルは数百万または数十億のパラメータを持っていますオープンAIが2023年春にリリースした大規模言語モデルGPT-4は、約2兆のパラメータを持っていると噂されていますそれは・・・

「GATE DA 2024のサンプル問題集」

導入 GATE 2024の志望者の皆さん、素晴らしいニュースです!インド科学研究所(IISc)が、今後のGATE試験のためのサンプル問題を発表しました。これらのサンプルは、準備を強化するための貴重な資源です。このブログ投稿では、GATE DAのサンプル問題からの質問の包括的なリストを編集しました。 最初の25の質問は1マークずつ Q1. 𝑏を検索木の分岐係数とします。最適なゴールに到達するために、初期状態から𝑑回のアクションが必要な場合、最悪の場合には、反復深化深さ優先探索(IDDFS)と反復深化A*探索(IDA*)では初期状態が何回展開されますか? (A) IDDFS – 𝑑, IDA* -𝑑(B) IDDFS – 𝑑, IDA* -(𝑏)^d*(C) IDDFS – 𝑏^d, IDA* -𝑑(D) IDDFS…

In Japan, the concept of FinTech is gaining popularity rapidly, and many businesses are starting to incorporate data science into this field. Data science involves the analysis and interpretation of large amounts of data to gain insights and make informed

イントロダクション 現代のダイナミックな金融の景色において、データサイエンスは< a href=”https://www.voagi.com/comparing-chatgpts-and-bards-free-versions.html” >フィンテックとバンキング業界の要石となりました。これは、情報に基づいた意思決定の駆動力となり、顧客と金融業界全体の両方に利益をもたらしています。信用情報機関のTransUnionのような機関は、クレジットスコアリングや顧客セグメンテーションなどの手法を用いて、このデータに基づく意思決定をサポートしています。これにより、この領域での機械学習モデルの開発と実装が増えています。 本記事では、データサイエンスが金融の世界を形作る上で果たす重要な役割について掘り下げます。クレジットスコアリングの基本的な意義からデータガバナンスの複雑さ、および顧客セグメンテーションの変革的な力まで、この探求は金融機関がデータに基づく意思決定を行うためにどのようにデータサイエンスを活用しているかを強調しています。 学習目標: フィンテックにおけるクレジットスコアリングの役割と重要性を理解する。 データガバナンスについて学び、金融データの安全性における重要性を理解する。 顧客セグメンテーションが金融の意思決定に与える影響を発見する。 フィンテックにおけるクレジットスコアリングと金融データ分析 クレジットスコアリングはフィンテックの景色において基本的な要石です。クレジットスコアは、銀行がローンや各種金融商品の対象性を評価するために頼るものです。それはあなたの金融的な健全性を数値で表示したものです。しかし、それは単純な数字ではなく、年齢、収入、資産などの多くの要素に影響を受ける複雑な計算です。 フィンテックの領域では、このクレジットスコアは、顧客がローンやクレジットカードの返済を滞納する可能性があるかどうかを評価する上で重要な役割を果たします。返済滞納の履歴がある顧客は、望ましくない「拒否」カテゴリーに置かれるかもしれません。対照的に、好意的なクレジットスコアを持つ顧客は、さまざまな金融商品にアクセスすることができます。この微調整されたプロセスは、責任ある貸し出しの基盤となるデータ分析および予測モデリングに基づいています。 特徴量選択とモデル展開 利用可能な膨大な金融データがあるため、予測モデルの構築に使用する情報を絞り込むことは重要です。特徴量選択はデータ分析の鍵となるステップであり、データセットを最も関連性の高い変数に絞り込むのに役立ちます。このプロセスは、高度に相関する特徴を特定し、最も情報量の豊富な特徴のみを残すための統計的手法を使用することを含みます。これにより、モデルの精度が向上し、計算コストと時間も削減されます。 特徴が選択されると、予測モデルは新しい顧客の信用力を評価するために展開されます。これは、ローン返済のリスクを最小限に抑え、責任ある貸し出しを確保するための重要なステップです。これらのモデルの性能は、分類器の予測能力を測るROC曲線などのメトリクスを使用して評価されます。フィンテックでは、AUC(曲線下面積)が0.75以上であり、頑健なモデルを示すことが業界の標準です。 モデル評価とメトリクス 予測モデルが作成されたら、その精度と信頼性を評価することが重要です。銀行の領域では、顧客がローンを返済する可能性の予測など、モデルが結果を予測する能力にかかっています。正解率、適合率、再現率などの伝統的なメトリクスが役割を果たしますが、詳細な分析はこれらの基本的なメトリクスを超えたものです。 2つの重要なメトリクスとして、コルモゴロフ・スミルノフ(KS)テストとジニ係数がよく使用されます。KSは、陽性クラスと陰性クラスの累積分布関数の間の分離度を測定します。要するに、モデルが製品(例えば、クレジットカード)を購入するかどうかを区別する能力を示します。注目すべきは、KSが正規分布を要求しないため、さまざまなシナリオに適応できることです。 一方、ジニ係数は受信者操作特性(ROC)曲線とベースラインの間の領域を評価します。これは、ROC曲線により深く入り込み、分類器のパフォーマンスについての洞察を提供します。これらのメトリクスは、特定の顧客セグメントを対象とする場合に特に重要です。なぜなら、彼らの行動を理解することは金融の意思決定において重要だからです。 モデルのモニタリング モデルのモニタリングは、特に金融テクノロジーの急速な世界では継続的なプロセスです。過去に構築されたモデルは、顧客行動の進化、市場のダイナミクス、規制の変化により、すぐに時代遅れになることがあります。ここでモニタリングが重要な役割を果たします。 定期的に、現在のデータを使用してKSやGiniなどのメトリックが計算され、開発フェーズからのそれらと比較されます。これらのメトリックの差異は、モデルのパフォーマンスを示す指標となります。ビジネス上の考慮事項によって決定されるしきい値は、モデルに介入が必要かどうかを判断するのに役立ちます。例えば、差異が10%または20%を超える場合は、詳細な調査が必要です。 このような重要な差異がある場合、モデルの正確性を調整するための2つの方法があります:再校正と再開発。…

AUCとHarrellのCに対する直感

「機械学習や予測モデリングの世界に踏み込むすべての人は、モデルのパフォーマンステストという概念に遭遇します教科書は通常、読者が最初に学ぶ内容にのみ違いがあります...」

高度な顔認識のためのDeepFace

顔認識はAIとMLの分野で数年間トレンドとなっており、顔認識の普及には広範な文化的・社会的影響が及ぶしかし、現在の機械と人間の視覚システムの間には性能の差があり、顔認識の応用範囲が制限されているこのバッファーを克服するためには、[…]が必要とされる

「キャリアは、AWS GlueとAmazon SageMakerを使用してHVACの故障を予測する方法」

この投稿では、CarrierとAWSのチームが、単一のモデルを使用して大規模な機器のフリート全体での障害を予測するためにMLを適用した方法を示しますまず、AWS Glueを使用して高度に並列化されたデータ処理を行う方法について説明します次に、Amazon SageMakerが私たちを特徴エンジニアリングとスケーラブルな教師あり深層学習モデルの構築にどのように役立つかについて説明します

あなたのモデルは良いですか?Amazon SageMaker Canvasの高度なメトリクスについての詳細な調査

もしあなたがビジネスアナリストであるなら、おそらく顧客の行動を理解することは、あなたが気にする最も重要なことの一つでしょう顧客の購買意思決定の背後にある理由やメカニズムを理解することは、収益の成長を促進することができますしかし、顧客の喪失(一般的には顧客の離脱と呼ばれます)は常にリスクを伴いますなぜ顧客が去るのかについての洞察を得ることは、重要です

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us