Learn more about Search Results Rパッケージ
- You may be interested
- データサイエンスのインタビューのためのA...
- 「テキストから具体的なものへ:3D-LLMが...
- 『冬-8Bに出会ってください:冴えたプラッ...
- 「ジャスティン・マクギル、Content at Sc...
- 「生成モデルを本番環境に展開する際の3つ...
- 「GPT-4の高度なデータ分析ツールを使った...
- 「ChatGPTとZapierでTwitterの成長を自動...
- 「Gen-AI:楽しさ、恐怖、そして未来!」
- サムスンのAI研究者が、ニューラルヘアカ...
- Amazon SageMaker JumpStartを使用した対...
- このAI論文は、ChatGPTを基にしたテキスト...
- 高度なRAG 01:小から大への検索
- 「LLMを評価するためのより良い方法」
- 「仮説検定とA/Bテスト」
- 「グローバルAIガバナンスの制度探求」
「OpenAIやLM Studioに頼らずにAutoGenを使用する方法」
イントロダクション OpenAIやLMスタジオに頼らずに、あなた自身のAIチームを作成する準備はできていますか?もはや銀行を荒らすことも、アプリをダウンロードすることもありません。llama-cpp-pythonの設定から、autogenフレームワークのヘルプを借りてローカルLLMのパワーを探求するまで。OpenAI APIに依存せず、Autogenのフルポテンシャルを引き出す準備をしましょう。 学習目標 詳細に入る前に、この記事の主な学習目標を概説しましょう: さまざまなAIライブラリとツールを評価・比較する方法を学ぶ。 llama-cpp-pythonがOpenAI APIの代替として提供できる方法を探索する。 2つの現実世界の使用例で獲得した知識を適用する: アルゴリズムメンターチームの構築と金融チャート生成の自動化。 AutoGenの改善されたユーザーエクスペリエンスを探索し、統合されたIPythonを通じて即時のコード実行結果を得る。 この記事はData Science Blogathonの一環として公開されました。 ツール紹介: llama-cpp-python、AutoGen、およびローカルLLM しかし、このテックツールキットの特別な点は何でしょうか? llama-cpp-pythonは、LLMAのような有名なモデルを含めて、ローカルでLLMを実行するためのゲートウェイです。コンピュータ上にAIのスーパースターがいるようなもので、さまざまなBLASバックエンドのサポートにより、速度は驚異的です! AutoGen AutoGenは、基盤モデルを使用するための高レベルな抽象化として機能する統一されたマルチエージェント会話フレームワークです。LLM、ツール、および人間の参加者を統合し、自動化されたチャットを通じて能力のある、カスタマイズ可能で会話形式のエージェントを結合します。エージェント同士が自律的にコミュニケーションして共同作業を行うことができ、複雑なタスクを効率的に進めることやワークフローを自動化することが可能です。 もしAutoGenの機能をより深く探求し、戦略的なAIチームビルディングをどのように支援するかを調べることに興味があるなら、当社の専用ブログ「Strategic AI Team Building…
In Japanese 「可視化フレームワークの種類」
あなたのニーズと理想的なビジュアライゼーションフレームワークをマッチさせる
「PDFドキュメントを使用したオブジェクト検出のためのカスタムDetectron2モデルの訓練と展開(パート1:訓練)」
「私は半年ほど、PDF文書を機械読み取り可能にすることで、少なくともセクションを特定するテキストである見出し/タイトルが読み取れるようにするビジネスケースを解決しようと取り組んできました」
これがP-Hackingの解決策ですか?
科学研究において、データの操作や結果の覗き見は、その分野が存在して以来の問題となっています研究者はしばしば、出版されるために有意なp値を目指します...
「Pythonによるロジスティック回帰のエラーのデバッグのベストプラクティス」
「ロジスティック回帰(LR)の基本についてはたくさんのことが書かれてきましたその多機能性や実績のあるパフォーマンス、基礎となる数学についてもしかし、LRを成功裏に実装し、デバッグする方法を知ることが重要です...」
正確なクラスタリングを簡単にする方法:kscorerの最適なK-meansクラスタを自動選択するガイド
kscorerはクラスタリングプロセスを効率化し、高度なスコアリングと並列化を通じたデータ分析への実用的なアプローチを提供します
2023年のランダムフォレスト:パワフルな手法の最新拡張
機械学習の時間軸において、ランダムフォレスト(RF)はブレイマンの画期的な論文で紹介された古代の手法です([1])年季が入っているにもかかわらず、その性能には驚嘆させられ、…
「Rにおけるエラーバーを伴ったグループ化された棒グラフ」
棒グラフは、いくつかの理由で必須で広く使用される視覚化ツールです数値とカテゴリ変数の関係を視覚化するための優れた選択肢であり、簡単に表示されます...
「Devtoolsを使ったRデータパッケージの作成と公開の詳細ガイド」
「2023年のPositカンファレンスでスピーカーに招待され、アニメーションと相互作用を使ったストーリーテリングについてプレゼンをする機会を得たとき、完璧なデータセットについて数ヶ月間悩みましたどれも興味深いものばかりでした...」
ベスト5のRコース(2024年)
私たちは最高のRコースを見ていきますこれらのコースによって、Rプログラミングの経験を積むために必要なすべてのスキルを学ぶことができます
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.