Learn more about Search Results MicroStrategy
- You may be interested
- プロンプトエンジニアリングへの紹介
- 宇宙における私たちの位置を理解する
- 世界のトップ10量子コンピューティング企...
- チューリッヒ大学の研究者たちは、スイス...
- PyTorch LSTM — 入力、隠れ状態、セル状態...
- 「スタンフォード大学と一緒に無料でコン...
- 「AIの進化と生成AIへの道のりとその仕組み」
- 次の1時間の雨を予測する
- 「MITとハーバードの研究者は、脳内の生物...
- バイトダンスとCMUの研究者は、AvatarVers...
- 「50 ミッドジャーニーノーリングのヒント...
- 「AIコーディング:Google Bardは優れたPy...
- 「企業の持続可能性目標を達成するために...
- 「CassIO OpenAIに触発されたジェネラティ...
- チャットボットに関する不正行為の懸念は...
In Japanese 「可視化フレームワークの種類」
あなたのニーズと理想的なビジュアライゼーションフレームワークをマッチさせる
「2023年のトップAIポッドキャスト」
「私たちのトップAIポッドキャストリストでは、AIの最新のトレンドや影響についての深い洞察と魅力的な話を提供しています詳細はこちらでご確認ください!」
「トップの予測分析ツール/プラットフォーム(2023年)」
予測分析は我々があまり考えずに利用する標準的なツールです。予測分析はデータマイニング、統計学、機械学習、数理モデリング、人工知能の手法を用いて、未知の出来事について将来の予測を行います。これは過去のデータを使用して予測を作成します。例えば、特定の日の市場で製品(たとえば花)の売上を予測する場合、バレンタインデーであればバラの売上はより多くなるでしょう!特別な日には通常の日よりも花の売上が高くなることは明らかです。 予測分析は寄与要素を特定し、データを収集し、機械学習、データマイニング、予測モデリング、その他の分析手法を適用して将来を予測することを目指します。データから得られる洞察には、過去には理解されていなかった複数の要素間のパターンや関係が含まれています。それらの隠れたアイデアを見つけることは、あなたが思っている以上に価値があります。予測分析は企業が業務を改善し目標を達成するために使用されます。予測分析は構造化データと非構造化データの両方の洞察を活用することができます。 予測分析、ディープラーニング、人工知能の関係は何ですか? 例えば、コンピュータが音声を認識したり、意思決定を行ったりする能力をどれくらい持っているかを研究することは、コンピュータ科学の一分野である人工知能の範疇に含まれます。人工知能(AI)は、知識を獲得し、それを新しい判断に適用することによって、コンピュータに人間と同等かそれ以上に反応する能力を教えることを目指しています。 それはアルゴリズムを用いてデータのパターンを見つけ出し、将来の出来事を予測することに関連しています。機械学習が共通のパターンを識別するためには、大量のデータを処理する必要があります。機械は練習を通じて情報やスキル(またはデータ)を獲得します。 ディープラーニングはテキスト、音声、画像、写真などを扱う機械学習の一分野です。ディープラーニングは、自転車の画像とオートバイの画像を区別するなど、複雑な操作を理解するために膨大な量のデータが必要です。 予測分析とは、機械学習、統計学、過去のデータを使用して将来の確率とトレンドを予測することを指します。また、将来の出来事の進行に影響を及ぼす可能性のある行動を推奨するという点で、他の機械学習手法よりも進んでいます。 予測分析には人工知能と機械学習の両方が使用されます。実際、分析ツールは予測スコアを生成し、エンドユーザーにどの手順を取るべきかをアドバイスします。一言で言えば、人工知能は機械学習と予測分析の総称です。 アルゴリズムとモデル 予測分析は、機械学習、データマイニング、統計学、分析、モデリングなどの分野からさまざまな手法を使用します。機械学習とディープラーニングモデルは、予測アルゴリズムの主要なカテゴリです。本記事では、いくつかのモデルについて説明します。それぞれが固有の利点と欠点を持っているにもかかわらず、特定の業界に特化した基準に従うアルゴリズムを使って再利用やトレーニングが可能です。データの収集、前処理、モデリング、展開は、予測分析の反復プロセスのステップであり、出力をもたらします。我々は手続きを自動化して、新しいデータに基づいて連続的に予測を提供することができます。 モデルが構築された後は、トレーニングプロセスを繰り返すことなく、新しいデータを入力して予測を生成することができます。ただし、これにはトレーニングにかなりのデータが必要となるという欠点があります。予測分析は機械学習アルゴリズムに依存しているため、正確なデータ分類を行うためには正確なデータラベルが必要です。モデルが1つのシナリオから別のシナリオにおける結論を一般化する能力の不足は、一般化可能性に関する懸念を引き起こします。予測分析モデルの適用性の調査結果には特定の問題が存在しますが、転移学習などの技術を用いることでこれらの問題を解決することができる場合もあります。 予測分析のモデル 分類モデル 最もシンプルなモデルの1つです。古いデータから学んだ知識に基づいて、新しいデータを分類します。一部の分類手法には、決定木やサポートベクターマシンがあります。これらは、True/FalseやYes/Noなどのバイナリの質問に応えることで、マルチクラスやバイナリの分類に利用することができます。 クラスタリングモデル クラスタリングモデルは、共通の属性に基づいてデータポイントをクラスタリングします。これは教師なし学習アルゴリズムであり、教師付き分類とは異なります。クラスタリングアルゴリズムは数多く存在しますが、どれもすべてのアプリケーションシナリオにおいて最良とは言えません。 予測モデル これはメトリック値の予測を扱い、前のデータからの教訓に基づいて新しいデータに対して数値を計算します。これは最もポピュラーな予測分析手法の1つです。数値データにアクセスできる場所ではどこでも使用することができます。 外れ値モデル その名前が示すように、データセットの異常なデータアイテムに基づいています。データ入力エラー、計測エラー、実験エラー、データ処理のミス、サンプルエラー、または自然エラーなど、あらゆるものが外れ値と考えられます。一部の外れ値は性能や精度を低下させる可能性がありますが、他の外れ値はユニークさの発見や新しい推論の観察に役立ちます。 時系列モデル 入力パラメータとして時間の期間を使用し、任意のデータポイントの系列に適用することができます。過去のデータから数値的な指標を作成し、そのメーターを使用して将来のデータを予測します。 最高の予測分析ツールとプラットフォーム H2O…
2023年のトップビジネスインテリジェンスツール
トップのビジネスインテリジェンスソリューションは、データの洞察を見つけ、ステークホルダーに効果的に伝えることを容易にします。データは、営業やマーケティングからワークフローと効率性、採用と人事、総合的なパフォーマンスと収益性まで、あらゆるものに対して収集できるため、企業が意味のある洞察を見つけるために大量のデータを見極めることは今まで以上に重要です。しかし、この情報のほとんどは分断されており、専門のビジネスインテリジェンス(BI)ツールの助けを借りてのみ組み合わせることができます。 キーパフォーマンスインジケータ(KPI)は、このデータが正確な予測に基づいてビジネスの運営を改善する方法の一つです。多くのプログラムは組み込みの分析機能を提供していますが、その結果をビジネスインテリジェンスシステムにエクスポートすることができます。 最高のビジネスインテリジェンスツールは、複雑なデータのプレゼンテーションを簡素化するため、関係者に提示できるインタラクティブな表現に基づいています。 以下に、現在市場でトップのビジネスインテリジェンスツールを示します。 actiTIME actiTIMEは、企業の生産性を把握するのに役立つ時間とプロジェクト管理システムです。時間とプロジェクトの進捗状況は、そのサポートによってリアルタイムで監視することができ、予算内および期限内に終了することができます。この透明性とコントロールのレベルにより、管理者はリソースの割り当て、優先順位の設定、タイムテーブルについてよく情報を得て、よく判断することができます。actiTIMEのパフォーマンスデータとトレンドの視覚的表現は、管理者の迅速な状況把握を助けます。このグラフィックは、停滞、非効率性、改善の機会を見つけるのに役立ちます。このデータに基づいて是正措置を講じ、チームがプロジェクトの目標に積極的に取り組んでいることを保証します。 SAS Viya SAS Viyaは、堅牢で柔軟なビジネスアナリティクスプラットフォームであり、データへの簡単なアクセスと洞察に基づく分析を瞬時に提供します。モダンなマイクロサービスアーキテクチャに基づいて構築されたSAS Viyaは、ビッグデータと高度なアナリティクスの複雑さに対応できるようになっており、困難なビジネスの課題を解決し、情報を元にした適切な選択を行うことができます。SAS Viyaは、重要なデータとトレンドのグラフィカルな表現を提供し、分析を迅速化し、意思決定を改善します。報告書、チャート、マップ、ダッシュボードはすべて対話形式で表示されます。さらに、意思決定者の専門知識にかかわらず、意思決定の最適化を支援するために、決定木、シナリオシミュレーション、自動予測も含まれています。 Oracle BI Oracle BIは、ビジネスがより良い意思決定のためにデータを収集し分析するために使用できる包括的なBIツールセットです。高度な分析、レポート作成、ダッシュボードの機能など、さまざまなツールとテクノロジーにアクセスできます。これは、さまざまな業界で活動する企業の要求に合わせてカスタマイズできる堅牢なシステムです。Oracle BIを使用することで、企業はデータをよりよく理解し、生産性を向上させ、未開発の成長の機会を見つけることができます。Oracle BIには、営業プロセスの最適化から顧客行動分析、業績に関する具体的な洞察まで、企業が次のレベルに進むために必要なすべてが備わっています。 Clear Analytics 組織は、堅牢なデータレポートツールであるClear Analyticsを利用して、市場で優位に立つことができます。使いやすいインターフェースと強力な機能により、Clear Analyticsを使用することで、複雑なデータセットを迅速かつ効果的に分析し、トレンドを把握し、データに基づいた意思決定を行うことができます。事前のトレーニングは必要ないというのは、その主な利点の一つです。ほとんどの人にとって既に馴染みのあるExcelの機能を活用することで、Clear Analyticsは、より少ない時間と労力でパワフルなデータ分析機能を提供します。ソフトウェアはMicrosoft…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.