Learn more about Search Results Meg

最大のLLMベンチマーキングスイート:MEGAVERSE

「LLMがより高度かつ網羅的になるにつれて、評価フレームワークも複数のモダリティ、言語、バリエーションを対象にしたパフォーマンス評価能力に対応しなければなりません...」 (LLMがよりこうどかつもうらてきになるにつれて、ひょうかフレームワークもふくすうのもだりてぃ、げんご、ばりえーしょんをたいしょうにしたぱふぉーまんすひょうかのうりょくにたいおうしなければなりません...)

「TimeGPT:時系列予測のための初の基礎モデル」

時系列予測の分野は非常にエキサイティングな時期を迎えています過去のわずか3年間で、N-BEATS、N-HiTS、PatchTST、TimesNetなど、多くの重要な貢献が見られました…

Megatron-LMを使用して言語モデルをトレーニングする方法

PyTorchで大規模な言語モデルをトレーニングするには、単純なトレーニングループだけでは不十分です。通常、複数のデバイスに分散しており、安定した効率的なトレーニングのための多くの最適化技術があります。Hugging Face 🤗 Accelerateライブラリは、トレーニングループに非常に簡単に統合できるように、GPUとTPUを跨いで分散トレーニングをサポートするために作成されました。🤗 TransformersもTrainer APIを介して分散トレーニングをサポートしており、トレーニングループの実装を必要とせずにPyTorchでの完全なトレーニングを提供します。 大規模なトランスフォーマーモデルを事前トレーニングするための研究者の間でのもう一つの人気ツールはMegatron-LMです。これはNVIDIAのApplied Deep Learning Researchチームによって開発された強力なフレームワークです。🤗 AccelerateとTrainerとは異なり、Megatron-LMの使用は直感的ではなく、初心者には少し抵抗があるかもしれません。しかし、これはGPU上でのトレーニングに最適化されており、いくつかの高速化を提供することができます。このブログ記事では、Megatron-LMを使用してNVIDIAのGPU上で言語モデルをトレーニングし、それをtransformersと一緒に使用する方法を学びます。 このフレームワークでGPT2モデルをトレーニングするためのさまざまなステップを紹介します。これには以下が含まれます。 環境のセットアップ データの前処理 トレーニング モデルの🤗 Transformersへの変換 なぜMegatron-LMを選ぶのか? トレーニングの詳細に入る前に、他のフレームワークよりもこのフレームワークが効率的である理由を理解しましょう。このセクションは、Megatron-DeepSpeedでのBLOOMトレーニングについての素晴らしいブログから着想を得ています。詳細については参照してください。このブログ記事はMegatron-LMへの優しい入門を提供することを目的としています。 データローダー Megatron-LMには、データがトークン化され、トレーニング前にシャッフルされる効率的なデータローダーが付属しています。また、データは番号付きのシーケンスに分割され、それらは計算が必要な場合にのみ計算されるようにインデックスで保存されます。インデックスを作成するために、エポック数はトレーニングパラメータに基づいて計算され、順序が作成され、その後シャッフルされます。これは通常の場合とは異なり、データセット全体を繰り返し処理してから2番目のエポックのために繰り返すというものです。これにより、学習曲線が滑らかになり、トレーニング中の時間が節約されます。 組み込みCUDAカーネル GPU上で計算を実行する場合、必要なデータはメモリから取得され、計算が実行され、結果がメモリに保存されます。簡単に言えば、組み込みカーネルのアイデアは、通常はPyTorchによって別々に実行される類似の操作を、単一のハードウェア操作に統合することです。そのため、複数の個別の計算で行われるメモリ移動の回数を減らします。以下の図は、カーネルフュージョンのアイデアを示しています。これは、詳細について説明しているこの論文からインスピレーションを受けています。 f、g、hが1つのカーネルで結合された場合、fとgの中間結果x’とy’はGPUレジスタに保存され、hによって即座に使用されます。しかし、フュージョンがない場合、x’とy’はメモリにコピーされ、hによって読み込まれる必要があります。したがって、カーネルフュージョンは計算に著しいスピードアップをもたらします。Megatron-LMはまた、PyTorchの実装よりも高速なApexのFused…

このAI論文は、「Vary」という新しいアプローチを明らかにしています:高度な多言語認識タスクのための大規模なビジョン言語モデルの視覚語彙を拡張するためのアプローチ

大視覚言語モデル(LVLM)は、コンピュータビジョンと自然言語処理を組み合わせて、視覚的なコンテンツのテキストの説明を生成することができます。これらのモデルは、画像のキャプション付け、可視化された質問応答、および画像の検索など、さまざまなアプリケーションで驚異的な進展を遂げています。しかし、その優れたパフォーマンスにもかかわらず、LVLMはまだいくつかの課題に直面しています。特に、密で詳細な知覚を必要とする特殊なタスクにおいて、ビジョンの語彙が制約されているという問題です。 中国科学技術大学、MEGVIIテクノロジー、および中国科学院の研究者たちは、固有の認識力を必要とする特殊なタスクのためにLVLMを強化するVaryという方法を導入しました。Varyは、効率的に新しい特徴を獲得し、詳細な知覚を改善するためのLVLMを活性化します。実験結果は、Varyの効果を示しています。研究者たちは、さらなる探求のためのプラットフォームとしてVaryを提案しています。研究では、GPT-4をトレーニングデータ生成に使用し、Varyの応用範囲をさまざまな視覚タスクに適用することを強調しています。これにより、LVLMの能力が拡張される一方で、元の能力も維持されます。 この研究は、CLIP-VITなどの一般的なビジョン語彙の制約に取り組んでおり、LVLMにおいてビジョン語彙をスケールアップする必要性を提起しています。これにより、外国語のLVLMのテキスト語彙を拡張することに着想を得たVaryという方法を導入しました。Varyは、語彙ネットワークを使用して新しいビジョン語彙を生成し、元の語彙と統合します。これにより、非英語のOCRやチャート理解などの様々なタスクにおけるエンコーディング効率とモデルパフォーマンスが向上します。この研究は、Varyの設計が今後の研究を刺激すると予想しています。 この研究では、Varyの2つの構成「Vary-tiny」と「Vary-base」を紹介しています。細かい知覚に焦点を当てたVary-tinyは、テキスト入力ブランチを持たず、小さなOPT-125Mモデルを使用します。ドキュメントとチャートのデータを正例、自然画像を負例としてトレーニングされます。Vary-tinyの語彙ネットワークは新しいビジョン語彙を生成し、Vary-baseでは元の語彙と統合されます。Vary-baseのトレーニングでは、両方の語彙ネットワークが使用され、重みが固定されますが、LVLMのパラメータと入力埋め込み層が最適化されます。具体的な実装の詳細には、AdamW最適化、余弦退火スケジューラ、特定の学習率が含まれます。ドキュメントとチャートの理解のための合成データが作成されます。 Varyは、複数のタスクで有望なパフォーマンスを発揮し、ドキュメントレベルのOCR、チャート理解、およびMMVetタスクで優れた結果を達成しています。具体的には、DocVQAでは78.2%、MMVetでは36.2%のANLSを達成し、新しいドキュメントの解析機能における能力を示しています。また、Vary-tinyとVary-baseは、ドキュメントOCRタスクで強力な結果を示しており、Vary-baseは他のLVLMを凌駕しています。この研究はVaryの成功を認めつつ、視覚語彙をスケールアップする効果的な改善の必要性を強調しています。 まとめると、この研究の主なポイントは次のように要約されます: 提案: LVLMにおける視覚語彙のスケールアップのための効率的な方法。 手法: 提案された方法は、オリジナルの言語と統合されたネットワークを介して生成された新しいビジョン語彙を導入します。 能力: この方法は、特にドキュメントレベルのOCRやチャート理解のタスクにおいて、詳細な知覚を向上させます。LVLMの元々の機能は維持しながら、素早く新しい特徴を獲得します。 パフォーマンス: さまざまなタスクで有望なスコアが示されており、この方法はドキュメント解析機能で他のLVLMを凌駕しています。

ギガGPTに会ってください:CerebrasのnanoGPTの実装、Andrei Karpathyの効率的なコードでGPT-3のサイズのAIモデルを訓練するためにわずか565行のコード

大規模なトランスフォーマーモデルのトレーニングには、特に数十億または数兆のパラメータを持つモデルを目指す場合、重要な課題があります。主な難関は、複数のGPUに効率的にワークロードを分散させながらメモリ制限を緩和することにあります。現在の状況では、Megatron、DeepSpeed、NeoX、Fairscale、Mosaic Foundryなど、複雑な大規模言語モデル(LLM)スケーリングフレームワークに依存しています。ただし、これらのフレームワークは、モデルのサイズが大きくなるにつれてかなりの複雑さを導入します。今回の研究では、CerebrasのgigaGPTを、この課題に対する画期的な解決策として紹介します。これにより、複雑な並列化技術の必要性を排除した代替手法を提供します。 大規模なトランスフォーマーモデルのトレーニングには、MegatronやDeepSpeedなどのフレームワークのように、複数のGPU上での分散コンピューティングに依存している方法が主流です。ただし、数十億のパラメータを超えるモデルの場合、これらの方法ではメモリ制約に遭遇し、複雑な解決策が必要です。これに対して、CerebrasのgigaGPTはパラダイムシフトをもたらします。565行という非常にコンパクトなコードベースを備えたnanoGPTを実装しています。この実装は、追加のコードやサードパーティのフレームワークに依存することなく、1000億を超えるパラメータを持つモデルをトレーニングできます。gigaGPTはCerebrasのハードウェアの広範なメモリと計算能力を活用します。他のフレームワークとは異なり、余分な複雑さを導入せずにシームレスに動作し、簡潔で独自のコードベースとGPT-3のサイズのモデルのトレーニング能力を提供します。 gigaGPTは、基本的なGPT-2のアーキテクチャを実装しており、nanoGPTの原則に密接に沿っています。学習された位置の埋め込み、標準のアテンション、モデル全体にわたるバイアス、およびnanoGPTの構造に対する選択肢を採用しています。特筆すべきは、この実装が特定のモデルサイズに限定されないことです。gigaGPTは111M、13B、70B、および175Bパラメータを持つモデルのトレーニングでその柔軟性を検証しています。 OpenWebTextデータセットとnanoGPTのGPT-2トークナイザーと前処理コードを使用してテストを行います。gigaGPTのパフォーマンスは、専用の並列化技術を必要とせずに数百億のパラメータから数千億のパラメータまでスケーリングする能力によって強調されています。565行のコードがリポジトリ全体をカバーしており、その簡単な構造と効率性を示しています。 実装の成功は、特定のモデル構成でもさらに示されます。たとえば、111M構成はCerebras-GPTと一致し、モデルの次元、学習率、バッチサイズ、トレーニングスケジュールが同じです。同様に、13B構成もサイズにおいて対応するCerebras-GPT構成に近く、70B構成はLlama-2 70Bからインスピレーションを受けています。70Bモデルは安定性とパフォーマンスを維持し、スケーラビリティを示しています。70Bモデルを検証した後、研究者たちはGPT-3の論文に基づいて175Bモデルを構成することで境界を em emました。初期の結果は、メモリの問題なく拡大スケールを処理できるモデルの能力を示しており、gigaGPTは1兆を超えるパラメータを持つモデルにもスケーリングできる可能性を示唆しています。 結論として、gigaGPTは大規模なトランスフォーマーモデルのトレーニングの課題に対する画期的な解決策として浮かび上がっています。研究チームの実装は、簡潔で使いやすいコードベースを提供するだけでなく、GPT-3のサイズのモデルのトレーニングも可能にします。Cerebrasのハードウェアを利用した、広範なメモリと計算能力による利点は、大規模なAIモデルのトレーニングをよりアクセス可能、スケーラブル、効率的にする大きな進歩です。この革新的なアプローチは、巨大な言語モデルのトレーニングの複雑さに取り組もうとする機械学習の研究者や実践者にとって有望な道を開くものと言えます。 Introducing gigaGPT: our implementation of @karpathy’s nanoGPT that trains GPT-3 sized models in just…

費用効率の高いGPT NeoXおよびPythiaモデルの訓練における節約と正確性:AWS Trainiumの活用

大規模言語モデル(またはLLMs)は、日々の会話のトピックとなっていますその迅速な採用は、1億人のユーザーに到達するまでに必要な時間の量で明らかですこれが「Facebookでの4.5年」からわずかな「2ヶ月でのChatGPT」の史上最低になったことが証拠です生成型事前学習トランスフォーマー(GPT)は因果自己回帰の更新を使用します[...]

「月光スタジオのAIパワード受付アバター、NANAに会いましょう」

エディター注:この投稿は、当社の週刊「In the NVIDIA Studio」シリーズの一環であり、注目のアーティストを紹介し、クリエイティブのヒントやトリックを提供し、NVIDIA Studio技術がクリエイティブなワークフローを向上させる方法を示しています。また、新しいGeForce RTX 40シリーズGPUの機能、技術、リソースについて詳しく説明し、コンテンツ制作を劇的に加速させる方法を探求しています。 ムーンシャインスタジオのクリエイティブチームは、アニメーションとモーションデザインに特化したアーティスト志向の視覚効果(VFX)スタジオであり、問題を解決するように指示されました。 彼らの台湾オフィスでは、受付担当者が常に面会や挨拶に忙しく、他の重要な事務作業を完了できませんでした。さらに悪いことに、自動化されたキオスクの挨拶システムは予想通りに機能していませんでした。 シニアムーンシャインスタジオ3Dアーティストであり、今週のNVIDIA StudioクリエーターであるEric Chiangは、この課題に取り組みました。彼は現実的でインタラクティブな3Dモデルを作成しました。これは新しいAIパワードのバーチャルアシスタントであるNANAの基盤となります。このアバターは、ゲストを歓迎し、基本的な会社情報を提供することができ、受付担当者チームの負担を軽減します。 Chiangは、彼のお気に入りのクリエイティブアプリでGPUアクセラレーションの機能を使用してNANAを構築しました。それは彼のNVIDIA StudioバッジのついたMSI MEG Trident X2 PCという装備されたGeForce RTX 4090グラフィックカードで駆動されています。 彼のクリエイティブワークフローは、彼のGPUのテンソルコアによって強化され、AI特有のタスクを高速化し、作業の品質を向上させました。RTXとAIはゲームのパフォーマンスを向上させ、生産性を向上させるなどもします。 これらの高度な機能はNVIDIA Studio Driversによってサポートされています。…

「エキスパートのミックスについて解説」

ミクストラル8x7Bのリリース(発表、モデルカード)により、トランスフォーマのクラスがオープンAIコミュニティで最も話題となっています。それがエキスパートの混合(Mixture of Experts、略してMoEs)です。このブログ記事では、MoEsの構成要素、トレーニング方法、および推論時の考慮事項について見ていきます。 さあ、深く掘り下げてみましょう! 目次 ミクストラルとは何ですか? MoEsの簡潔な歴史 スパース性とは何ですか? MoEsのトークンのロードバランシング MoEsとトランスフォーマ スイッチトランスフォーマ ルータZ損失によるトレーニングの安定化 エキスパートは何を学ぶのですか? エキスパートの数をスケーリングすると事前トレーニングにどのような影響を与えるのですか? MoEsの微調整 スパースMoEsと密なモデルの使用時期はいつですか? MoEsを効果的に活用するために エキスパート並列処理 能力係数と通信コスト サービングテクニック 効率的なトレーニング オープンソースのMoEs ワークのエキサイティングな方向性 いくつかのリソース…

アルゴリズムの効率をマスターする

イントロダクション テクノロジーの世界では、アルゴリズムの効率性を理解することはまるで超能力を持っているかのようです。アルゴリズムの効率性はコンピュータ科学者だけでなく、コードを書くすべての人にとって重要なものです。このガイドでは、アルゴリズムの効率性とその計測方法について紹介します。また、わかりやすいコードの例を使ってアルゴリズムの分析と最適化の方法も学びます。このガイドを終えるころには、効率的で反応性の高いプログラムを書くための準備が整っているでしょう。 アルゴリズムの効率性とは何ですか? アルゴリズムの効率性とは、少ないリソースで多くのことをすることを意味します。つまり、最もリソース効率の良い方法でタスクを達成することです。効率的なアルゴリズムはソフトウェアやシステムの基盤となり、より高速で実行コストが低く、スケーラブルなものにします。 アルゴリズムの効率性を評価する上で重要な要素は時間計算量と空間計算量です。時間計算量はアルゴリズムの実行時間を測定し、空間計算量は使用するメモリを評価します。 アルゴリズムの効率性は異なる記法を使ってテストされます。これについてもう少し詳しく理解しましょう。 アルゴリズムの記法とは何ですか? アルゴリズムの記法は、アルゴリズムを体系的に記述するために使用される象徴的な表現や規則です。これには、特定の記号、構造、図表、および他の図形やテキスト形式が含まれます。これらの記法によって、ステップバイステップのロジックやアルゴリズムのプロセスを明瞭で標準化された方法で伝えることができます。 アルゴリズムの記法の例としては、疑似コード、フローチャート、構造化英語、UMLダイアグラム、Big O、およびコントロールテーブルがあります。これらの記法によってアルゴリズムのパフォーマンスを分析したり比較したりすることが容易になります。効率的なアルゴリズムとは、時間やメモリなどのリソースを最小限に使用してタスクを達成するアルゴリズムのことです。 主要なアルゴリズムの記法 アルゴリズムの効率性を測定する際に、主要な記法として以下の3つが挙げられます: Big O、Theta、Omegaです。それぞれの記法はアルゴリズムの振る舞いに異なる洞察を提供します。例を使ってそれぞれを簡単に紹介しましょう。 特定の要素を配列内で検索したいとします。以下にそのためのコードを示します: def search_element(arr, target):for num in arr:if num == target:return…

「2023年のトップ8のAIトレンド:年間レビュー」

葉っぱが金色に変わり、12月の寒さが広がる中、人工知能の領域で目覚ましい進歩が見られた今年を振り返る時が来ました。2023年は単なる進歩の年ではありませんでした。それはトライアンフの年であり、AIが成し遂げられる限界が繰り返し押し広げられ、再定義された年でした。LLM(大規模言語モデル)の能力における画期的な進展から、前例のないほど世界とのナビゲーションや相互作用が可能な自律エージェントの登場まで、この年はこの変革的な技術の無限の可能性を示すものでした。 この包括的な探求の中で、私たちは2023年のAIを定義した8つの主要なトレンドについて掘り下げ、産業を再構築し、未来を革命化する革新を明らかにしていきます。だから、AI愛好家の皆さん、私たちは技術史の記録に永遠に刻まれる一年についての旅に出発です。 RLHFとDPOの微調整 2023年は、大規模言語モデル(LLM)の能力を向上させるための重要な進展が見られました。2つの主要なアプローチが登場しました: 人間のフィードバックに基づく強化学習(RLHF):この手法は、人間のフィードバックを活用してLLMの学習プロセスをガイドし、持続的な改善と進化するユーザーのニーズや好みに対応させることができます。このインタラクティブなアプローチにより、LLMは複雑または主観的な領域において微妙な理解力と意思決定能力を開発することができます。 直接的な選好最適化(DPO)::DPOはよりシンプルな代替手法であり、明示的な強化信号を必要とせずにユーザーの選好に直接最適化します。このアプローチは効率性とスケーラビリティを重視し、より速い適応と展開を必要とするアプリケーションに最適です。そのすっきりした性格により、ユーザーフィードバックに基づいてLLMの振る舞いを迅速に調整することができ、進化する好みに合わせることができます。 RLHFとDPOはLLMの開発における重要な進展を表していますが、既存の微調整手法を置き換えるのではなく、補完するものです: 事前学習:大規模なテキストとコードのデータセットを用いてLLMを訓練し、一般的な言語理解能力を学習させること。 微調整:特定のタスクまたはデータセットに基づいてLLMをさらに訓練し、特定のドメインやアプリケーションに適した能力を調整すること。 マルチタスク学習:LLMを複数のタスクに同時に訓練することで、共有表現を学習し、各タスクのパフォーマンスを向上させること。 LLMの効率性に対処する LLMの能力が向上するにつれて、計算上の制約とリソースの限界が重要な懸念事項となりました。その結果、2023年の研究はLLMの効率性の向上に焦点を当て、以下のような技術の開発をもたらしました: FlashAttention:この革新的なアテンションメカニズムは、LLMの計算コストを大幅に削減します。これにより、より速い推論と訓練が可能になり、LLMをリソースに制約のある環境でより実用的に利用し、実世界のアプリケーションに統合することができるようになります。 LoRA および QLoRA:LoRAやQLoRAなどの手法は、2023年にも提案された軽量かつ効率的なLLMの微調整方法を提供します。これらの手法は、既存のLLMアーキテクチャに追加された小さなモジュールであるアダプターに依存し、再トレーニングすることなくカスタマイズを可能にします。これにより、著しい効率の向上、より速い展開時間、さまざまなタスクへの適応性の向上が実現されます。 これらの進展は、効率的なLLMへの需要の増大に対応し、この強力な技術への広範な導入の道を開き、結果としてこの技術へのアクセスを民主化することにつながります。 検索補完生成(RAG)の浸透 純LLMは巨大な可能性を秘めていますが、それらの正確性と実証的根拠に関する懸念は依然として存在しています。検索補完生成(RAG)は、既存のデータや知識ベースとLLMを組み合わせることで、これらの懸念に対処する有望な解決策として登場しました。このハイブリッドアプローチにはいくつかの利点があります: エラーの減少:外部情報から事実情報を取り込むことにより、RAGモデルはより正確で信頼性のある出力を生成することができます。 拡張性の向上:RAGモデルは純LLMに必要な大規模なトレーニングリソースの必要性を排除し、大規模なデータセットに適用することができます。 低コスト:既存の知識リソースを利用することにより、LLMのトレーニングおよび実行に関連する計算コストを削減することができます。 これらの利点により、RAGは検索エンジン、チャットボット、コンテンツ生成など、さまざまなアプリケーションにおける貴重なツールとして位置付けられています。 自律エージェント…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us