Learn more about Search Results MathInstruct
- You may be interested
- LLMの出力解析:関数呼び出し対言語チェーン
- 「時系列データセットで欠損データを特定...
- 「UMDが主導する研究がモンゴメリー郡の起...
- 「つながる点 OpenAIの主張されたQ-Starモ...
- このAI研究は、多モーダル大規模言語モデ...
- このAIニュースレターはあなたが必要なす...
- 「生成型AIのためのプロンプト微調整の技...
- UCバークレーとスタンフォード大学の研究...
- アドバンテージアクタークリティック(A2C)
- 「Q-学習を用いたダイナミックプライシン...
- 「トランスフォーマーと位置埋め込み:マ...
- 人間に戻る:AIの道:コードからぬいぐる...
- 「無脳」ソフトロボットがロボット工学の...
- 9/10から15/10までの週のトップ...
- 「OLAP vs. OLTP:データ処理システムの比...
「2023年、オープンLLMの年」
2023年には、大型言語モデル(Large Language Models、LLMs)への公衆の関心が急増しました。これにより、多くの人々がLLMsの定義と可能性を理解し始めたため、オープンソースとクローズドソースの議論も広範な聴衆に届くようになりました。Hugging Faceでは、オープンモデルに大いに興味を持っており、オープンモデルは研究の再現性を可能にし、コミュニティがAIモデルの開発に参加できるようにし、モデルのバイアスや制約をより簡単に評価できるようにし、チェックポイントの再利用によってフィールド全体の炭素排出量を低減するなど、多くの利点があります(その他の利点もあります)。 では、オープンLLMsの今年を振り返ってみましょう! 文章が長くなりすぎないようにするために、コードモデルには触れません。 Pretrained Large Language Modelの作り方 まず、大型言語モデルはどのようにして作られるのでしょうか?(もし既に知っている場合は、このセクションをスキップしてもかまいません) モデルのアーキテクチャ(コード)は、特定の実装と数学的な形状を示しています。モデルのすべてのパラメータと、それらが入力とどのように相互作用するかがリストとして表されます。現時点では、大部分の高性能なLLMsは「デコーダーのみ」トランスフォーマーアーキテクチャのバリエーションです(詳細は元のトランスフォーマーペーパーをご覧ください)。訓練データセットには、モデルが訓練された(つまり、パラメータが学習された)すべての例と文書が含まれています。したがって、具体的には学習されたパターンが含まれます。ほとんどの場合、これらの文書にはテキストが含まれており、自然言語(例:フランス語、英語、中国語)、プログラミング言語(例:Python、C)またはテキストとして表現できる構造化データ(例:MarkdownやLaTeXの表、方程式など)のいずれかです。トークナイザは、訓練データセットからテキストを数値に変換する方法を定義します(モデルは数学的な関数であり、したがって入力として数値が必要です)。トークン化は、テキストを「トークン」と呼ばれるサブユニットに変換することによって行われます(トークン化方法によっては単語、サブワード、または文字になる場合があります)。トークナイザの語彙サイズは、トークナイザが知っている異なるトークンの数を示しますが、一般的には32kから200kの間です。データセットのサイズは、これらの個々の「原子論的」単位のシーケンスに分割された後のトークンの数としてよく測定されます。最近のデータセットのサイズは、数千億から数兆のトークンに及ぶことがあります!訓練ハイパーパラメータは、モデルの訓練方法を定義します。新しい例ごとにパラメータをどれだけ変更すべきですか?モデルの更新速度はどのくらいですか? これらのパラメータが選択されたら、モデルを訓練するためには1)大量の計算パワーが必要であり、2)有能な(そして優しい)人々が訓練を実行し監視する必要があります。訓練自体は、アーキテクチャのインスタンス化(訓練用のハードウェア上での行列の作成)および上記のハイパーパラメータを使用して訓練データセット上の訓練アルゴリズムの実行からなります。その結果、モデルの重みが得られます。これらは学習後のモデルパラメータであり、オープンな事前学習モデルへのアクセスに関して多くの人々が話す内容です。これらの重みは、推論(つまり、新しい入力の予測やテキストの生成など)に使用することができます。 事前学習済みLLMsは、重みが公開されると特定のタスクに特化または適応することもあります。それらは、「ファインチューニング」と呼ばれるプロセスを介して、ユースケースやアプリケーションの出発点として使用されます。ファインチューニングでは、異なる(通常はより専門化された小規模な)データセット上でモデルに追加の訓練ステップを適用して、特定のアプリケーションに最適化します。このステップには、計算パワーのコストがかかりますが、モデルをゼロから訓練するよりも財政的および環境的にはるかにコストがかかりません。これは、高品質のオープンソースの事前学習モデルが非常に興味深い理由の一つです。コミュニティが限られたコンピューティング予算しか利用できない場合でも、自由に使用し、拡張することができます。 2022年 – サイズの競争からデータの競争へ 2023年以前、コミュニティで利用可能だったオープンモデルはありましたか? 2022年初頭まで、機械学習のトレンドは、モデルが大きければ(つまり、パラメータが多ければ)、性能が良くなるというものでした。特に、特定のサイズの閾値を超えるモデルは能力が向上するという考えがあり、これらの概念はemergent abilitiesとscaling lawsと呼ばれました。2022年に公開されたオープンソースの事前学習モデルは、主にこのパラダイムに従っていました。 BLOOM(BigScience Large Open-science…
MAmmoTHとは、一般的な数学問題解決に特化したオープンソースの大規模言語モデル(LLM)シリーズです
現代の大規模言語モデル(LLM)は、数学的な推論に大きく依存しており、それがこの研究の主な焦点です。最近の進歩にもかかわらず、クローズドソースのモデル(GPT-4、PaLM-2、Claude 2など)は、GSM8KやMATHなどの人気のある数学的な推論のベンチマークを支配しており、オープンソースのモデル(Llama、Falcon、OPTなど)は遠く及ばない状況があります。 このギャップを埋めるためには、2つの主要なアプローチがあります: GalacticaやMINERVAなどの継続的な事前学習:この方法では、数学に関連するウェブデータの100Bトークン以上を用いてLLMをトレーニングしています。計算コストが高いですが、この方法によりモデルの科学的推論能力が一般的に向上します。 RFT(rejection sampling fine-tuning)やWizardMathなどのデータセットごとに特化したファインチューニング手法:これらの手法は、それぞれのドメイン内では効果的ですが、推論が必要な数学の他の領域には適用できません。 ウォータールー大学、オハイオ州立大学、HKUST、エディンバラ大学、IN.AIの最近の研究は、軽量かつ汎用性のある数学の指導調整技術を採用し、LLMの数学的推論能力を向上させる方法を模索しています(ファインチューニングタスクだけでなく一般的に)。 現在のアプローチは、Chain-of-Thought(CoT)の方法論に大いに依存しており、数学の問題を自然言語のステップで解決する方法を説明しています。しかし、この方法は計算精度や難しい数学的・アルゴリズム的推論手法には対応しきれません。PoTやPALのようなコードベースの手法では、数学問題の解決手順を効率化するためにサードパーティのリソースを使用します。 この方法では、計算量の多いタスク(例:sympyを使用した二次方程式の解法やnumpyを使用した行列の固有値の計算など)を別のPythonインタプリタに委任することが推奨されます。一方、PoTはより抽象的な推論シナリオ(常識的な推論、形式論理、抽象代数など)を扱う際にはいくつかの制限があります、特に事前存在しないAPIの場合には。 CoTとPoTの両方の利点を活かすために、研究チームは数学のための新しいハイブリッドな指導調整データセット「MathInstruct」を提案しています。その主な特徴は次のとおりです: さまざまな数学的領域と複雑度レベルの包括的なカバレッジ ハイブリッドなCoT&PoTの根拠 6つの新たに選択されたデータセットと7つの既存のデータセットがMathInstructの数学的な正当化の基盤を提供しています。モデリングの観点から、研究者たちは入出力形式とデータソースの変動の影響を調べるために、約50のユニークなモデルをトレーニングおよび評価しています。 結果として得られたモデルは数学的な一般化能力において非常に優れています。 研究者たちは、MAmmoTHをGSM8K、MATH、AQuA-RAT、NumGLUEなどの様々なデータセットに対してテストしました。これらのモデルは、オープンソースのLLMの数学的な推論の効率を大幅に向上させ、最新のアプローチよりもOOD(ドメイン外)データセットに対してより一般化された性能を示します。人気のあるコンペティションレベルのMATHデータセットでの7Bモデルの結果は、WizardMath(オープンソースのMATHの最先端技術)よりも3.5倍(35.2%対10.7%)優れており、34BのMAmmoTH-Coder(Code Llamaで調整)の結果はCoTを使用したGPT-4よりも優れています。MAmmoTHとMAmmoTH-Coderの両方のモデルは、以前のオープンソースモデルよりも大幅に精度が向上しています。
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.