Learn more about Search Results Lambda

FastAPI、AWS Lambda、およびAWS CDKを使用して、大規模言語モデルのサーバーレスML推論エンドポイントを展開します

データサイエンティストにとって、機械学習(ML)モデルを概念実証から本番環境へ移行することは、しばしば大きな課題を提供します主な課題の一つは、良好なパフォーマンスを発揮するローカルトレーニング済みモデルをクラウドに展開して、他のアプリケーションで使用することですこのプロセスを管理することは手間がかかる場合がありますが、適切なツールを使用することで、...

「転移学習を探求しましょう…」(Ten’i gakushū o tankyū shimashou…)

転移学習については、多くの定義があります基本的には、事前学習済みモデルの知識を活用して新しい問題を解決することを指します転移学習には数多くの利点があります...

LangChain表現言語とLLMを使用した検証実装のチェーン’ (LangChainひょうげんげんごとLLMをしようしたけんしょうじっそうのチェーン)

導入 人工知能(AI)の分野では、正確性と信頼性を追求する持続的な探求が、ゲームチェンジングな革新をもたらしています。これらの戦略は、生成モデルがさまざまな質問に関連する回答を提供するために、重要な役割を果たしています。さまざまな洗練されたアプリケーションでのGenerative AIの使用に関する最大の障壁の1つは、幻想です。最近Meta AI Researchが発表した「大規模言語モデルにおける幻覚を減らすための検証チェーン」に関する論文で、テキスト生成時の幻想を直接的に減らすための簡単な技術について説明しています。 この記事では、幻視の問題について学び、論文で言及されているCoVeの概念、そしてそれをLLM(Large Language Models)、LangChainフレームワーク、およびLangChain Expression Language(LCEL)を使用して実装する方法について探求します。 学習目標 LLMでの幻視の問題を理解する。 幻視を軽減するためのChain of Verification(CoVe)メカニズムについて学ぶ。 CoVeの利点と欠点について知る。 LangChainを使用してCoVeを実装し、LangChain Expression Languageを理解する。 この記事はData Science Blogathonの一環として公開されました。 LLMにおける幻覚の問題とは? まず、LLMにおける幻覚の問題について学んでみましょう。オートリージェレーティブジェネレーションアプローチを使用すると、LLMモデルは前の文脈が与えられた場合の次の単語を予測します。よくあるテーマの場合、モデルは正しいトークンに対して高い確率を自信を持って割り当てるため、十分な例を見ています。しかし、モデルが珍しいまたは不慣れなトピックについてトレーニングされていないため、高い確信を持って正確でないトークンを生成することがあります。これにより、それ自体は正しそうな情報の幻視が生じます。…

「Amazon ComprehendのためのPDFの事前ラベル付けを自動化する」

「Amazon Comprehend」はテキストデータから洞察を得るための事前トレーニング済みおよびカスタムAPIを提供する自然言語処理(NLP)サービスですAmazon Comprehendのお客様は、位置、人名、日付など、ビジネスに特有の興味のあるエンティティを抽出するためのカスタムなる名前エンティティ認識(NER)モデルをトレーニングすることができますカスタムモデルをトレーニングするには、[...]

『AWSプロトタイピングによるICL-GroupのAmazon SageMaker上でのコンピュータビジョンモデルの構築』

「これはICLとAWSの従業員が共同執筆した顧客投稿ですICLは、イスラエルに拠点を置く多国籍の製造および鉱業企業で、ユニークな鉱物に基づいた製品を製造し、主に農業、食品、エンジニアリング材料の三つの市場で人類の基本的なニーズを満たしています彼らの鉱山サイトでは、監視が必要な産業用機器が使用されています...」

「Amazon SageMaker Pipelines、GitHub、およびGitHub Actionsを使用して、エンドツーエンドのMLOpsパイプラインを構築する」

機械学習(ML)モデルは孤立して動作するものではありません価値を提供するためには、既存の製造システムやインフラに統合する必要がありますそのため、設計と開発の過程でMLライフサイクル全体を考慮する必要がありますMLオペレーション(MLOps)は、MLモデルの生涯にわたって効率化、自動化、およびモニタリングを重視しています堅牢なMLOpsパイプラインを構築するには、異なる部門間の協力が求められます[…]

Amazon BedrockとAmazon Transcribeを使用して、生成AIを使用して録音のサマリーを作成します

「会議のメモは共同作業の重要な一部ですが、しばしば見落とされてしまいます討論を主導し、注意深く聞きながらメモを取ることは、重要な情報が記録されずに逃げてしまうことが簡単ですメモが取られていても、整理されていないか、読みづらいことがあり、無意味になってしまうこともありますこの記事では、Amazonを使った効果的なメモの使い方について探っています」

Amazon SageMaker JumpStartを使用してLLMと対話するためのWeb UIを作成します

ChatGPTの発売および生成AIの人気の上昇は、AWS上で新しい製品やサービスを作成するためにこの技術をどのように利用できるかについての好奇心を持つ顧客たちの想像力を捉えていますこれにより、より対話的なエンタープライズチャットボットなどの製品やサービスを作成する方法を紹介しますこの記事では、Web UIを作成する方法について説明します

「OpenAIやLM Studioに頼らずにAutoGenを使用する方法」

イントロダクション OpenAIやLMスタジオに頼らずに、あなた自身のAIチームを作成する準備はできていますか?もはや銀行を荒らすことも、アプリをダウンロードすることもありません。llama-cpp-pythonの設定から、autogenフレームワークのヘルプを借りてローカルLLMのパワーを探求するまで。OpenAI APIに依存せず、Autogenのフルポテンシャルを引き出す準備をしましょう。 学習目標 詳細に入る前に、この記事の主な学習目標を概説しましょう: さまざまなAIライブラリとツールを評価・比較する方法を学ぶ。 llama-cpp-pythonがOpenAI APIの代替として提供できる方法を探索する。 2つの現実世界の使用例で獲得した知識を適用する: アルゴリズムメンターチームの構築と金融チャート生成の自動化。 AutoGenの改善されたユーザーエクスペリエンスを探索し、統合されたIPythonを通じて即時のコード実行結果を得る。 この記事はData Science Blogathonの一環として公開されました。 ツール紹介: llama-cpp-python、AutoGen、およびローカルLLM しかし、このテックツールキットの特別な点は何でしょうか? llama-cpp-pythonは、LLMAのような有名なモデルを含めて、ローカルでLLMを実行するためのゲートウェイです。コンピュータ上にAIのスーパースターがいるようなもので、さまざまなBLASバックエンドのサポートにより、速度は驚異的です! AutoGen AutoGenは、基盤モデルを使用するための高レベルな抽象化として機能する統一されたマルチエージェント会話フレームワークです。LLM、ツール、および人間の参加者を統合し、自動化されたチャットを通じて能力のある、カスタマイズ可能で会話形式のエージェントを結合します。エージェント同士が自律的にコミュニケーションして共同作業を行うことができ、複雑なタスクを効率的に進めることやワークフローを自動化することが可能です。 もしAutoGenの機能をより深く探求し、戦略的なAIチームビルディングをどのように支援するかを調べることに興味があるなら、当社の専用ブログ「Strategic  AI Team Building…

「Pythonでリストをフィルタリングする方法?」

イントロダクション リストのフィルタリングは、特定の基準に基づいてリストから特定の要素を抽出するPythonでの基本的な操作です。不要なデータを削除したり、特定の値を抽出したり、複雑な条件を適用したりするために、リストフィルタリングの技術をマスターすることは、効率的なデータ操作には欠かせません。この記事では、Pythonでのリストのフィルタリングのさまざまな技術と実用的な方法、さらにデータ選択スキルを向上させるための高度なフィルタリング技術について探求していきます。 フルスタックデータサイエンティストになりたいですか?AI&MLキャリアを進めるためには、BlackBelt Plusプログラムに参加する時がきました! Source: Favtutor 学習目標 Pythonリストフィルタリングの基本的な概念と重要性を理解する。 filter()、リスト内包表記、lambda関数、および条件文などの主要な技術をマスターし、効率的なデータ操作を行う。 チェインフィルター、条件の否定、ネストされたリストフィルタリング、正規表現、カスタム関数などの高度なフィルタリング方法を探求し、Pythonのデータフィルタリングの専門知識を高める。 無料でPythonを学びたいですか?今すぐ学ぶ! Pythonにおけるリストフィルタリングとは? リストフィルタリングとは、特定の条件や基準に基づいてリストから特定の要素を選択することを指します。これにより、必要なデータを抽出し、残りのデータを破棄することができ、元のリストの一部として作業できるようになります。Pythonにはリストをフィルタリングするためのさまざまな方法と技術が用意されており、それぞれに利点と使用例があります。 Pythonにおけるフィルタリングの技術 `filter()`関数の使用 Pythonの`filter()`関数は、関数とイテラブルを引数として受け取り、関数が`True`を返す要素を含むイテレータを返す組み込み関数です。与えられた条件に基づいてリストをフィルタリングするための簡潔な方法を提供します。以下に例を示します: #Pythonコード:def is_even(x):    return x % 2 == 0numbers =…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us