Learn more about Search Results LSTM

「人間の活動認識におけるディープラーニング:このAI研究は、Raspberry PiとLSTMを使用した適応的なアプローチを導入し、位置に依存しない正確性を高めます」

ヒューマンアクティビティ認識(HAR)は、さまざまなセンサから収集したデータに基づいて、自動的に人間の活動を識別および分類する方法と技術の開発に焦点を当てた研究領域です。HARは、スマートフォン、ウェアラブルデバイス、またはスマート環境などのマシンがリアルタイムで人間の活動を理解し解釈することを目指しています。 従来は、ウェアラブルセンサに基づく方法やカメラに基づく方法が使用されていました。ウェアラブルセンサはユーザにとって不快で不便です。カメラに基づく方法は侵入的な設置が必要で、プライバシーの懸念があります。既存のHAR技術は、位置依存性、ノイズへの感度、さまざまなアプリケーション(スマートホーム、ヘルスケア、モノのインターネットなど)で多様な活動をより柔軟に認識するための必要性などの課題に直面しています。UTeMが使用する方法は、正確で適応性があり、位置に依存しない解決策を提供します。 マラッカ工科大学(UTeM)の研究者は、従来の制約に対処するためのヒューマンアクティビティ認識(HAR)の手法を作り出しました。彼らはChannel State Information(CSI)と高度な深層学習技術を活用したシステムを導入しました。 このシステムは、Channel State Information(CSI)をLong Short-Term Memory(LSTM)ネットワークと組み合わせて使用します。システムは、無線通信チャネルの状態を抽出し、リアルタイムな分類と絶対的な位置に依存しないセンシングを可能にします。LSTMネットワークは、活動の特徴の連続的な学習を実現し、異なる人と環境における人間の活動の変動に対応することで、識別プロセスを容易にします。 研究者は、まずRaspberry Pi 4と専用ファームウェアを使用して原始的なチャネル状態情報(CSI)データを収集および前処理し、MATLABを使用して品質と応用を最適化するためにデータを改善したと強調しました。 Long Short-Term Memory(LSTM)ネットワークを使用して、CSIデータから重要な特徴を抽出し、複雑な人間の活動を正確に認識できるようにしました。彼らはLSTMモデルと分類プロセスに厳密なトレーニングを行いました。オンラインフェーズではパターン認識、オフラインフェーズではパフォーマンスの向上が含まれています。 このシステムは、LSTMアルゴリズムを使用して信号のセグメンテーション方法を導入し、人間の活動の開始点と終了点を正確に決定します。 研究者は、このシステムは人間の活動の認識において驚異的な97%の正確さを達成しました。新しい環境に適応する能力を示し、HAR技術の重要な進展を示しました。 研究者は、システムの顕著な適応性を強調しました。再学習や大幅な変更を必要とせずに異なる設定に簡単に統合することができます。この柔軟性により、さまざまな分野に実用的な解決策となり、スマートホーム、ヘルスケア、モノのインターネットなどの様々な実世界の要件に効果的に対応することができます。この手法は、HAR技術の重要な進展を表し、スマートホーム、ヘルスケア、モノのインターネットなどの多くの業界に大きな影響を与える可能性があります。

「PythonによるLong Short-Term Memoryのマスタリング:NLPでのLSTMの力を解き放つ」

この作業は、Pythonを使用したRNNとNLPに関する私の記事の続編です単純な再帰層を持つ深層学習ネットワークの自然な進化は、Long Short…

『LSTM-CRFモデルの詳細解説』

「自然言語処理の急速な進化の中で、トランスフォーマーが優れたモデルとして台頭し、さまざまなシーケンスモデリングのタスクで驚くべきパフォーマンスを発揮しています...」

時系列のLSTMモデルの5つの実践的な応用とコード

「2022年1月に『時系列のためのLSTMニューラルネットワークモデルの探求』を書いたとき、私の目標は、高度なニューラルネットワークを簡単にPythonで実装できることを示すことでしたscalecastを使用していました」

PyTorch LSTMCell — 入力、隠れ状態、セル状態、および出力の形状

「Pytorchでは、LSTMCell(nn.LSTMCellを使用)を使用するためには、入力時系列を表すテンソル、隠れ状態ベクトル、セル状態ベクトルの形状を理解する必要がありますこの中で...」

PyTorch LSTM — 入力、隠れ状態、セル状態、および出力の形状

「PyTorchでは、LSTM(nn.LSTM()を使用)を使用するために、入力時系列を表すテンソル、隠れ状態ベクトル、セル状態ベクトルの形状を理解する必要がありますこの記事では、…」

「BI-LSTMを用いた次の単語予測のマスタリング:包括的なガイド」

はじめに 次の単語を特定することは、次の単語の予測、または言語モデリングとしても知られています。自然言語処理のベンチマークタスクの一つは、言語モデリングです。基本的な形式では、特定の単語の後に続く単語を、それらに基づいて最も起こりやすいものとして選ぶことを意味します。言語モデリングは、さまざまな分野でさまざまな応用があります。 学習目標 統計分析、機械学習、データサイエンスで使用される多くのモデルの基本的なアイデアと原則を認識する。 回帰、分類、クラスタリングなどの予測モデルを作成し、データに基づいて正確な予測とタイプを生成する方法を学ぶ。 過剰適合と適合不足の原則を理解し、精度、適合率、再現率などの指標を使用してモデルのパフォーマンスを評価する方法を学ぶ。 データの前処理とモデリングに関連する特性を特定する方法を学ぶ。 グリッドサーチと交差検証を使用して、ハイパーパラメータを調整し、モデルを最適化する方法を学ぶ。 この記事はData Science Blogathonの一部として公開されました。 言語モデリングの応用 以下は言語モデリングの注目すべき応用例です。 モバイルキーボードのテキスト推奨 スマートフォンのキーボードには、モバイルキーボードのテキスト推奨、予測テキスト、またはオートサジェストと呼ばれる機能があります。入力すると、単語やフレーズを提案します。これにより、タイピングがより速く、エラーが少なくなり、より正確で文脈に適した推奨が行われます。 また読む:コンテンツベースのレコメンデーションシステムの構築 Google検索の自動補完 Googleなどの検索エンジンを使用して何かを検索するたびに、多くのアイデアが表示され、フレーズを追加すると、推奨がより良く、現在の検索に関連性が高くなります。それはどのように実現されるのでしょうか? 自然言語処理(NLP)技術が可能にします。ここでは、自然言語処理(NLP)を使用して、双方向LSTM(長短期記憶)モデルを利用して、文の残りの単語を予測する予測モデルを作成します。 さらに詳しくはこちら:LSTMとは? 長短期記憶の紹介 必要なライブラリとパッケージのインポート 次の単語の予測モデルを作成するために、双方向LSTMを使用するために必要なライブラリとパッケージをインポートするのが最も良いでしょう。一般的に必要なライブラリの一部を以下に示します: import…

OpenAIのLLMの支配を覆すことを目指す挑戦者:XLSTM

人工知能は、ヨーゼフ・”セップ”・ホヒライター教授が言語モデルの競争に新たな挑戦者を発表する中、激しい戦いを目撃しています。LSTMは、ヨーゼフ・ホヒライター博士とユルゲン・シュミットフーバーの発明により、ニューラルネットワークを革新し、精度の向上につながりました。しかし、ホヒライター教授は、LSTMの後継者である「XLSTM」という隠された存在を明かし、OpenAIの言語モデルの支配を崩すことを目指しています。XLSTMの画期的な機能により、自己回帰型言語モデリングの支配をめぐる争いは激化しています。 この挑戦者がどのように人工知能の景観を再定義し、OpenAIを退位させるかを探ってみましょう。 LSTM:言語モデルのゲームチェンジャー 長短期記憶(LSTM)は、言語モデルの性能を大幅に向上させる画期的なニューラルネットワークモデルとして登場しました。ヨーゼフ・ホヒライター博士とユルゲン・シュミットフーバーによって90年代後半に開発され、シーケンス解析と時系列予測において大きな進歩をもたらしました。 詳細はこちら:LSTMとは?長短期記憶の紹介 XLSTMの紹介:隠された後継者 機械学習界からの最新ニュースによれば、ヨーゼフ・ホヒライター教授の新作、XLSTMが明らかになりました。まだ一般には公開されていませんが、XLSTMはLSTMの遺産を引き継ぎ、自己回帰型言語モデリングの景観を革新することになるでしょう。 OpenAIを王座から追い落とす探求 ホヒライター教授のチームは、LSTMと結合した小規模データセットを使用して、あらゆるトランスフォーマーに学習させるために献身的に取り組んでいます。究極の目標は、OpenAIの人気言語モデルであるGPTの成果を超え、自己回帰型言語モデリングにおけるトップの座を獲得することです。 また、こちらもご覧ください:GPT-3から将来の言語モデルへ ChatGPTでのOpenAIの名声の上昇 サム・アルトマンによって設立されたOpenAIは、そのチャットボットChatGPTで世界中のユーザーを魅了し、2024年までに1億ドル以上の収益を上げることが報告されています。これにより、AI市場での地位を確固たるものにしています。 LSTMの言語モデル以外での多様性 LSTMの成功は、言語モデルにとどまらず、DeepmindのStarcraft 2やOpenAIのDota 2などの強化学習の応用においても効果を発揮しました。タンパク質の配列解析や自然災害の予測など、さまざまな分野でその多様性が輝きました。 次のフロンティアとしての言語 ホヒライター教授は、人間が創造した言葉が現実世界の対象物の抽象化を提供するため、言語に焦点を当てることが重要だと考えています。AIが独自の概念と説明を発明する能力には、大きな潜在能力があり、AIの開発に新たな地平を切り拓く可能性を秘めています。 モデルの戦い:LSTM vs. Transformers トランスフォーマーは非常に人気がありますが、ホヒライター教授は、LSTMがエンジニアリングタスクにおいて重要な役割を果たすと主張しています。従来のアーキテクチャとのユニークな相互作用は、革新のための興味深い機会を提供します。 トレーニングデータの複雑さを乗り越える 大規模言語モデルのトレーニングデータに関する秘密主義は、議論の的となっています。ホヒライター教授は、不適切なコンテンツのないデータセットを作成することの難しさを強調し、LAIONイニシアティブなどの規制ガイドラインが予想される中、AI生成コンテンツに関するルールの必要性を指摘しています。…

バイトダンスAI研究がStemGenを紹介:音楽の文脈を聞いて適切に反応するためにトレーニングされたエンドツーエンドの音楽生成ディープラーニングモデル

音楽生成は、既存の音楽に存在するパターンと構造を模倣するためにモデルを訓練することで行われるディープラーニングの一環です。RNN、LSTMネットワーク、トランスフォーマーモデルなど、ディープラーニングの技術が一般的に使用されます。この研究では、音楽のコンテキストに応じて反応する非自己回帰型のトランスフォーマーベースのモデルを使用して音楽音声を生成する革新的なアプローチを探求しています。従来のモデルが抽象的な調整に頼っているのに対し、この新しいパラダイムは聞くことと反応することを重視しています。この研究では、フィールドの最新の進歩を取り入れ、アーキテクチャの改良について議論しています。 SAMIと字節跳動社の研究者は、音楽コンテキストに反応する非自己回帰型のトランスフォーマーベースのモデルを紹介し、MusicGenモデルのための公開されたエンコードチェックポイントを活用しています。評価には、Frechet Audio Distance(FAD)やMusic Information Retrieval Descriptor Distance(MIRDD)などの標準的な指標や音楽情報検索ディスクリプタのアプローチが使用されています。その結果、このモデルは客観的な指標と主観的MOSテストを通じて、競争力のある音声品質と強固な音楽のコンテキストに対する整合性を示しています。 この研究は、画像と言語処理からの技術を借用して、ディープラーニングを通じたエンドツーエンドの音楽音声生成の最新の進展を強調しています。音楽作曲におけるステムの整合性の課題を重視し、抽象的な調整に頼る従来のモデルに対する批判を行っています。音楽のコンテキストに対して反応するためのモデルに非自己回帰型のトランスフォーマーベースのアーキテクチャを使用するトレーニングパラダイムを提案しています。モデルの評価には、客観的な指標、音楽情報検索ディスクリプタ、および聴取テストが必要です。 この手法では、音楽生成に非自己回帰型のトランスフォーマーベースのモデルを使用し、別個の音声エンコーディングモデルで残差ベクトル量子化を組み合わせています。複数の音声チャンネルを連結された埋め込みを介して単一のシーケンス要素に組み合わせます。トレーニングにはマスキング手法が使用され、強化された音声コンテキストの整合性を向上させるためにトークンサンプリング中にクラシファイアフリーガイダンスが使用されます。フレーシェ音声距離や音楽情報検索ディスクリプタ距離などの客観的な指標によってモデルのパフォーマンスが評価されます。生成されたサンプルを実際のステムと比較することで評価が行われます。 この研究では、標準的な指標や音楽情報検索ディスクリプタアプローチ(FADやMIRDDなど)を使用して生成されたモデルを評価しています。実際のステムとの比較により、モデルは最先端のテキスト条件付きモデルと同等の音声品質を達成し、音楽のコンテキストに強い音楽的な整合性を示しています。音楽のトレーニングを受けた参加者を対象としたMean Opinion Scoreテストは、このモデルが現実的な音楽の結果を生成する能力を確認しています。生成されたステムと実際のステムの分布整合性を評価するMIRDDは、音楽の一貫性と整合性の尺度となります。 まとめると、行われた研究は以下のように要約できます: この研究では、音楽のコンテキストに応答できる生成モデルの新しいトレーニングアプローチを提案しています。 このアプローチは、トランスフォーマーバックボーンを持つ非自己回帰言語モデルと、未検証の2つの改良点(マルチソースのクラシファイアフリーガイダンスと反復デコーディング中の因果バイアス)を導入しています。 これらのモデルは、オープンソースおよび独自のデータセットでトレーニングすることで最先端の音声品質を達成しています。 標準的な指標や音楽情報検索ディスクリプタのアプローチによって最先端の音声品質が検証されています。 Mean Opinion Scoreテストは、モデルが現実的な音楽の結果を生成する能力を確認しています。

「拡散を通じた適応学習:先進のパラダイム」

イントロダクション 教育と機械学習のダイナミックな風景において、適応学習を通じた拡散はパラダイムシフトを示しています。この高度なアプローチは、拡散の原則を利用して学習体験をカスタマイズし、個々の学習者のニーズとペースにシームレスに適応させます。この記事では、適応学習を通じた拡散の微妙な点、教育領域を横断するその応用、学習者や教育者にとって持つ変革的な影響について深く掘り下げていきます。 学習目標 教育と機械学習の文脈における適応学習を通じた拡散の主要な原則を理解する。 学習者モデル、チュータリングモデル、知識ドメインなど、適応学習アーキテクチャの主要なコンポーネントを探究する。 エドテック、企業研修、医療教育など、様々な領域での適応学習を通じた拡散の現実世界での応用について洞察を得る。 動的コンテンツの拡散、個別化された学習経路、リアルタイムフィードバックの拡散のための高度なコードスニペットの実装に関する知識を習得する。 学習者と教育者に対する適応学習を通じた拡散の変革的な影響、学習者の力を高め、教育者の効率を向上させる役割を認識する。 この記事はデータサイエンスブロガソンの一環として公開されました。 拡散を通じた適応学習の理解 拡散を通じた適応学習の核心は、教育モデルへの拡散プロセスの考えられた適用です。物理学と数学の根本的な概念である拡散は、粒子や情報のヴォーエージアイ(VoAGI)を通じた広がりを表します。教育の領域では、これは知識の知識の賢明な伝達と吸収を意味し、個々の学習者の独自の学習軌跡に合わせて調整します。 適応学習のアーキテクチャ 学習者モデル 適応学習アーキテクチャの核心は学習者モデルです。この動的なエンティティは、学習者の熟練度レベル、既存の知識、割り当てられた学習目標、好ましい学習スタイルなど、学習者の独自の属性を捉えます。学習者モデルは、各インタラクションごとに進化し適応して、最適な学習体験を提供するパーソナライズされた設計図として機能します。 既存の知識、割り当てられた目標、学習スタイル 既存の知識:この学習者モデルの側面は、学習者が既に知っていることを網羅します。前の知識を評価することで、システムは冗長性を回避し、既存のギャップを埋めるためにコンテンツを調整します。 割り当てられた目標:学習者に割り当てられた学習目標はもう一つの重要な側面です。これらの目標は基準となり、適応システムをガイドし、学習者固有の教育目標に合わせたコンテンツを編集します。 学習スタイル:学習者が情報を最も効果的に吸収する方法を理解することは重要です。学習スタイルは、視覚的、聴覚的、運動感覚など、個々の学習好みを含みます。適応学習アーキテクチャは、この情報を活用して、個別の学習スタイルに最適化された方法でコンテンツを提供します。 チュータリングモデル チュータリングモデルは、教育コンテンツの適応を担うインテリジェントなコアです。チュータリングモデルは、学習者モデルから得られた洞察を活用し、教育コンテンツの難易度、ペース、形式を動的に調整します。このモデルは高度なアルゴリズムを使用して、学習者の現在の熟練度と学習スタイルに適合する学習教材を提供し、より効果的な学習体験を促進します。 知識ドメイン 知識ドメインは、学習可能な科目全体を包括します。これはチュータリングモデルがコンテンツを抽出するための広範なリポジトリとなります。適応学習アーキテクチャは、知識ドメインから選択されたコンテンツが学習者の目標に合致するよう最適化し、教育の旅を改善します。 学習者への出力 適応学習アーキテクチャの最終的な出力は、個別の学習者に合わせたカスタマイズされた学習体験です。この出力には、学習者の理解と記憶力を最大化するためのカスタマイズされたレッスン、評価、フィードバックが含まれます。適応システムはリアルタイムの対話と学習者の変化するニーズに基づいて、この出力を継続的に改善します。…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us