Learn more about Search Results Kaggle
- You may be interested
- フィーチャーストアアーキテクチャとその...
- 「ビッグデータパイプラインのデータ品質...
- 神経刺激のための4Dプリント技術
- 遺伝的アルゴリズムを使用したPythonによ...
- 『チェッカーフラッグの先に:F1統計の探求』
- わずか3つのステップでOpenAIのGPT-Store...
- 「インプレッションGPT:放射線学報告書要...
- 大規模な言語モデルにおけるコンテキスト...
- 「AIデータ統合とコンテンツベースのマッ...
- 強化学習:マルコフ決定過程ー第1部
- 「グラフとネットワーク上の表現学習」
- 「ChatGPTコードインタプリタを使用して、...
- 公共関係(PR)における10以上のAIツール...
- 「トランスフォーマーの単純化:あなたが...
- 文書解析の革命:階層構造抽出のための最...
「2024年にデータサイエンティストになるためのトップ10のKaggle機械学習プロジェクト」
「トップ10のKaggle機械学習プロジェクトでマスターデータサイエンスを学び、データサイエンティストになろう」
機械学習を革新する:たった7行のコードでAutoGluonを使ってKaggleのトップ4%を達成
Slalom _buildで新しいデータエンジニアリングの役割を始めてから、数年前のMLの経験を最新化する必要があることに気付きましたデータエンジニアリング/データの経験を積んでから数年が経ちましたが...
逆戻り、個人化、そしてKaggle症候群
最近、私はKaggleのBlack Friday Predictionデータセットを使用した予測のケーススタディに取り組みましたこのデータセットは6年前に作成され、32,000回以上ダウンロードされています100を超える…
「KaggleのAIレポート2023で未来にダイブしよう – ホットなトレンドをチェックしよう」
「AIの世界について学んだことについて、世界最大のデータサイエンスと機械学習コミュニティに飛び込んでください」
リアルワールドの問題にKaggleのコンテストは役立つのか?
現実の世界に備えるために、Kaggleのコンペに参加する価値はあるでしょうか?
次回のデータプロジェクトで興味深いデータセットを取得する5つの方法(Kaggle以外)
素晴らしいデータサイエンスプロジェクトの鍵は素晴らしいデータセットですが、素晴らしいデータを見つけることは言うほど簡単ではありません私がデータサイエンス修士課程を勉強していた頃を覚えていますが、それはちょうど...
「MongoDBの時系列コレクションとAmazon SageMaker Canvasで洞察力の向上を加速する」
これは、MongoDBのBabu Srinivasanと共同執筆したゲスト投稿です現在の急速に変化するビジネスの風景では、リアルタイムの予測を行う能力の欠如は、正確かつタイムリーな洞察に重要な依存をする産業にとって、重要な課題をもたらしますさまざまな産業におけるリアルタイムの予測の欠如は、意思決定に重要な影響を与える切迫したビジネスの課題を提起します
2024年にフォローするべきデータサイエンスのトップ12リーダー
データサイエンスの広がりを見据えると、2024年の到来は、革新を牽引し、分析の未来を形作る一握りの著名人にスポットライトを当てる重要な瞬間として迎えられます。『Top 12 Data Science Leaders List』は、これらの個人の卓越した専門知識、先見のリーダーシップ、および分野への重要な貢献を称えるビーコンとして機能します。私たちは、これらの画期的なマインドの物語、プロジェクト、そして先見の見通しをナビゲートしながら、データサイエンスの進路を形作ると約束された航跡を探求します。これらの模範的なリーダーたちは単なるパイオニアにとどまることはありません。彼らは無類のイノベーションと発見の時代へと私たちを導く先駆者そのものです。 2024年に注目すべきトップ12データサイエンスリーダーリスト 2024年への接近とともに、データサイエンスにおいて傑出した専門知識、リーダーシップ、注目すべき貢献を示す特異なグループの人々に焦点を当てています。『Top 12 Data Science Leaders List』は、これらの個人を認識し、注目することで、彼らを思想リーダー、イノベーター、およびインフルエンサーとして認め、来年重要なマイルストーンを達成することが予想されます。 さらに詳細に突入すると、これらの個人の視点、事業、イニシアチブが、さまざまなセクターを横断する複雑な課題に対するメソッドとデータの活用方法を変革することが明らかになります。予測分析の進展、倫理的なAIの実践の促進、または先進的なアルゴリズムの開発など、このリストでハイライトされた個人たちが2024年にデータサイエンスの領域に影響を与えることが期待されています。 1. Anndrew Ng 「AIのゲームにおいて、適切なビジネスコンテキストを見つけることが非常に重要です。私はテクノロジーが大好きです。それは多くの機会を提供します。しかし結局のところ、テクノロジーはコンテクスト化され、ビジネスユースケースに収まる必要があります。」 Dr. アンドリュー・エングは、機械学習(ML)と人工知能(AI)の専門知識を持つ英米のコンピュータ科学者です。AIの開発への貢献について語っている彼は、DeepLearning.AIの創設者であり、Landing AIの創設者兼CEO、AI Fundのゼネラルパートナー、およびスタンフォード大学コンピュータサイエンス学科の客員教授でもあります。さらに、彼はGoogle AIの傘下にある深層学習人工知能研究チームの創設リードでありました。また、彼はBaiduのチーフサイエンティストとして、1300人のAIグループの指導や会社のAIグローバル戦略の開発にも携わりました。 アンドリュー・エング氏は、スタンフォード大学でMOOC(大規模オープンオンラインコース)の開発をリードしました。また、Courseraを創設し、10万人以上の学生に機械学習のコースを提供しました。MLとオンライン教育の先駆者である彼は、カーネギーメロン大学、MIT、カリフォルニア大学バークレー校の学位を保持しています。さらに、彼はML、ロボット工学、関連する分野で200以上の研究論文の共著者であり、Tiime誌の世界で最も影響力のある100人のリストに選ばれています。…
「転移学習を探求しましょう…」(Ten’i gakushū o tankyū shimashou…)
転移学習については、多くの定義があります基本的には、事前学習済みモデルの知識を活用して新しい問題を解決することを指します転移学習には数多くの利点があります...
「データサイエンスにおける予測の無限の可能性」
データサイエンスの道に足を踏み入れた当初、私の最初の課題は予測でした同時に、私は経済統計学の修士号も取得していました予測に対する最初の印象は…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.