Learn more about Search Results K-modes
- You may be interested
- テクニカルアーティストがNVIDIA Omnivers...
- マシンラーニングと最適化アルゴリズムの...
- 「コイントスを毎回勝つ方法」
- 「OECDレポート:AIによる高いリスクを持...
- ReLoRa GPU上で大規模な言語モデルを事前...
- 「KOSMOS-2:Microsoftによるマルチモーダ...
- 「2023年のAI タイムライン」
- 「GPTの力を解き放つ:ReactJSでOpenAIのG...
- PoisonGPTとは:それ以外は信頼されたLLM...
- 合成時系列データ生成としてのLLM
- 統計力の解読:マーケティング研究におけ...
- 11月20日から11月26日までの週の重要なLLM...
- 『感情を人工知能、OpenAI、および探索的...
- 「IDEFICSをご紹介します:最新の視覚言語...
- クラウドセキュリティの未来:トレンドと予測
「機械学習における10種類のクラスタリングアルゴリズム」
イントロダクション あなたはデータの巨大なボリュームがどのように解析され、隠れたパターンや洞察が明らかにされるのかを考えたことがありますか?その答えは、クラスタリングにあります。クラスタリングは、機械学習やデータ分析において強力なテクニックであり、顧客セグメンテーションから画像分析までの様々なタスクで似た特徴を持つデータポイントをグループ化することができます。 本記事では、機械学習における10種類の異なるクラスタリングアルゴリズムについて探求し、それらの動作や適用範囲について解説します。 クラスタリングとは何ですか? 顧客の購買履歴、生物の計測値、または画像のピクセルなど、さまざまなデータポイントの集合があると想像してください。クラスタリングを使用すると、それぞれのクラスタは他のクラスタよりも内部のアイテム同士がより類似しているサブセットにデータポイントを整理することができます。これらのクラスタは、共通の特徴や属性、または即座に明らかにされない関係によって定義されます。 クラスタリングは、マーケットセグメンテーションや推薦システムから異常検出や画像セグメンテーションまで様々な分野で重要です。データ内の自然なグループを認識することで、企業は特定の顧客セグメントに対してターゲティングを行うことができ、研究者は種を分類することができ、コンピュータビジョンシステムは画像内のオブジェクトを分離することができます。したがって、クラスタリングで使用される多様なテクニックやアルゴリズムを理解することは、複雑なデータセットから価値ある洞察を抽出するために必要です。 では、10種類の異なるクラスタリングアルゴリズムを理解しましょう。 A. セントロイドベースのクラスタリング セントロイドベースのクラスタリングは、セントロイド(代表点)の概念に基づいてデータセット内のクラスタを定義するクラスタリングアルゴリズムのカテゴリです。これらのアルゴリズムは、データポイントとそのクラスタのセントロイドとの距離を最小化することを目指します。このカテゴリには、K-meansとK-modesという2つの代表的なクラスタリングアルゴリズムがあります。 1. K-meansクラスタリング K-meansは、データをk個のクラスタに分割する広く利用されるクラスタリング手法です。kはユーザーによって事前に定義されます。この手法では、データポイントを最も近いセントロイドに割り当て、収束するまでセントロイドを再計算します。K-meansは数値属性を持つデータに効率的で効果的です。 2. K-modesクラスタリング(カテゴリカルデータのクラスタリングバリアント) K-modesは、カテゴリカルデータに適したK-meansの適応です。セントロイドではなく、各クラスタ内で最も頻度の高いカテゴリ値を表すモードを使用します。K-modesは、非数値属性を持つデータセットで価値のあるクラスタリングを効率的に行うための貴重な手段です。 クラスタリングアルゴリズム 主な特徴 適切なデータタイプ 主な使用例 K-meansクラスタリング セントロイドベース、数値属性、スケーラブル 数値(数量)データ 顧客セグメンテーション、画像分析…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.