Learn more about Search Results Irene

データサイエンスのスキルセットを拡大するために次のステップを踏みましょう

効果的なストーリーテリングから戦略的なキャリアプランニングまで、データサイエンスのキャリアを進めるために必要なスキルは多岐に渡り、ますます学際的になっています例えば、統計学や…

「では、なぜ私たちはレコメンデーションシステムを気にする必要があるのでしょうか…?フィーチャリング:トンプソンサンプリングへの優しい紹介」

今日も自分自身に気づいてしまった100...01日連続で、遅い晩ごはんの箱を手に持ったまま、Netflixで見る番組を探しながら食事をつまんでいる自分にフィードが…

『倫理と社会ニュースレター#5:ハグフェイスがワシントンに行くと、他の2023年夏の考え事』

人工知能(AI)における「倫理」について知っておくべき最も重要なことの一つは、それが「価値観」に関連しているということです。倫理は何が正しくて何が間違っているかを教えてくれるのではなく、透明性、安全性、公正などの価値観の語彙と優先順位を定めるための枠組みを提供します。今年の夏、私たちはAIの価値観についての理解を欧州連合、イギリス、アメリカの立法府に伝え、AIの規制の未来を形作るのに役立ちました。ここで倫理が光を放つのです:法律がまだ整っていないときに前進するための道筋を切り開くのに役立つのです。 Hugging Faceの主要な価値であるオープンさと責任を守るために、私たちはここで私たちが言ったことや行ったことのコレクションを共有しています。これには、私たちのCEOであるクレムが米国議会に対する証言や米国上院AI Insight Forumでの発言、E.U. AI Actに関するアドバイス、NTIAに対するAIの責任に関するコメント、そして私たちのChief Ethics Scientistであるメグの民主党議員団に対するコメントなどが含まれています。これらの議論の多くで共通していたのは、なぜAIのオープンさが有益であるのかという質問でした。私たちはこの質問に対する私たちの回答のコレクションをこちらで共有しています。 Hugging Faceのコア価値である民主化に則り、私たちは多くの時間を公に話すことに費やしてきました。そしてAIの世界で今起こっていることを説明するためにジャーナリストと対話する機会を与えられています。これには以下のものが含まれます: サーシャのAIのエネルギー使用と炭素排出に関するコメント(The Atlantic、The Guardian、2回、New Scientist、The Weather Network、The Wall Street Journal、2回)およびWall Street Journal op-edの一部の執筆;AIの終末論的なリスクに対する考え(Bloomberg、The Times、Futurism、Sky…

OpenRAIL オープンで責任あるAIライセンスフレームワークに向けて

オープン&レスポンシブAIライセンス(「OpenRAIL」)は、後者の責任ある使用を求めながら、AIアーティファクトのオープンアクセス、使用、配布を可能にするAI特有のライセンスです。 OpenRAILライセンスは、現在のオープンソフトウェアライセンスがコードに対して、およびクリエイティブコモンズが一般コンテンツに対して行っていることと同様に、オープンで責任あるMLに対する広範なコミュニティライセンスツールです。 機械学習と他のAI関連分野の進歩は、情報通信技術(ICT)セクターにおけるオープンソース文化の普及の一部によって、過去数年間で著しく発展してきました。これは、MLの研究開発ダイナミクスに浸透しています。イノベーションのための核としてのオープンさの利点にもかかわらず、(まだそうではない)最近の機械学習モデルの開発と使用に関する倫理的および社会経済的懸念に関連する出来事は明確なメッセージを広めています。オープンさだけでは十分ではありません。しかし、問題は、企業のプライベートAI開発プロセスの不透明性の下で問題が持続しているため、閉じたシステムも答えではありません。 オープンソースライセンスはすべてに適合しません MLモデルのアクセス、開発、使用は、オープンソースライセンスのスキームに非常に影響を受けています。たとえば、ML開発者は、公式のオープンソースライセンスやその他のオープンソースソフトウェアまたはコンテンツライセンス(Creative Commonsなど)を添付して重みを利用可能にすると、非公式に「モデルのオープンソース化」と呼ぶことがあります。これは次の疑問を投げかけます:なぜ彼らはそれをやるのですか?MLアーティファクトとソースコードは本当に似ているのでしょうか?技術的な観点から十分に共有できるほど共有していますか(たとえば、Apache 2.0など)。 ほとんどの現在のモデル開発者はそう考えているようですが、公開されたモデルの大部分はオープンソースライセンスを持っています(例:Apache 2.0)。たとえば、Hugging Face Model HubやMuñoz Ferrandis & Duque Lizarralde(2022)を参照してください。 しかし、経験的な証拠は、オープンソース化と/またはフリーソフトウェアダイナミクスへの厳格なアプローチと、MLアーティファクトのリリースにおけるFreedom 0への公理的な信念が、MLモデルの使用における社会倫理的な歪みを生み出していることを示しています(Widder et al. (2022)参照)。より簡単に言えば、オープンソースライセンスは、モデルがソフトウェア/ソースコードとは異なるアーティファクトであることを考慮に入れず、MLモデルの責任ある使用を可能にするには適応されていないため、適応されていません。 モデルのドキュメンテーション、透明性、倫理的な使用に専念した特定の特別なプラクティスが既に存在し、日々改善されています(例:モデルカード、評価ベンチマーク)。なぜ、MLモデルに関するオープンライセンスのプラクティスも、MLモデルから生じる特定の能力と課題に適応されていないのでしょうか? 同様の懸念は、商業および政府のMLライセンスプラクティスでも浮上しています。Bowe & Martin(2022)の言葉によれば、「Anduril…

機械学習におけるバイアスについて話しましょう!倫理と社会に関するニュースレター #2

機械学習におけるバイアスは普遍的であり、また複雑です。実際には、単一の技術的介入では問題を意味のある形で解決することはできないほど複雑です。機械学習モデルは社会技術システムであり、その展開コンテキストに依存し、常に進化しながら、不平等や有害なバイアスを悪化させる社会的な傾向を増幅させます。 これは、慎重に機械学習システムを開発するためには警戒心が必要であり、展開コンテキストからのフィードバックに対応することが求められます。これには、コンテキスト間での教訓の共有や、機械学習開発のあらゆるレベルでバイアスの兆候を分析するためのツールの開発などが必要です。 このブログポストでは、Ethics and Societyのメンバーが学んだ教訓と、機械学習におけるバイアスに対処するために開発したツールを共有しています。最初の部分では、バイアスとそのコンテキストについて幅広く考察しています。既に読んでいて、具体的にツールについて戻ってきた場合は、データセットやモデルのセクションに移動してください! 機械学習におけるバイアスに対処するために🤗のチームメンバーが開発したツールの一部を選択 目次: 機械バイアスについて 機械バイアス:機械学習システムからリスクへ バイアスをコンテキストに置く ツールと推奨事項 機械学習開発全体でのバイアスの対処 タスクの定義 データセットのキュレーション モデルのトレーニング 🤗のバイアスツールの概要 機械バイアス:機械学習システムから個人および社会的なリスクへ 機械学習システムは、さまざまなセクターやユースケースで展開されるため、以前に見たことのないスケールで複雑なタスクを自動化することができます。技術が最も効果的に機能する場合、人々と技術システムの間の相互作用をスムーズにし、高度に繰り返しの多い作業の必要性をなくしたり、研究をサポートするための情報処理の新しい方法を開放することができます。 しかし、同じシステムは、特にデータが人間の行動をエンコードする場合、差別的で虐待的な行動を再現する可能性があります。その結果、これらの問題は大幅に悪化する可能性があります。自動化とスケール展開は、次のようなことができます: 時間の経過とともに行動を固定化し、社会的な進歩が技術に反映されるのを妨げる オリジナルのトレーニングデータのコンテキストを超えて有害な行動を広める 予測を行う際にステレオタイプな関連性に過度に焦点を当てて不公平を増幅させる バイアスを「ブラックボックス」システム内に隠すことで救済の可能性を排除する これらのリスクをよりよく理解し対処するために、機械学習の研究者や開発者は、機械バイアスやアルゴリズムのバイアスなど、システムが展開コンテキストでさまざまな人口集団に対して負のステレオタイプや関連性をエンコードする可能性のあるメカニズムを研究し始めています。…

倫理と社会のニュースレター#3:Hugging Faceにおける倫理的なオープンさ

ミッション:オープンで良い機械学習 私たちのミッションは、良い機械学習(ML)を民主化することです。MLコミュニティの活動を支援することで、潜在的な害の検証と予防も可能になります。オープンな開発と科学は、権力を分散させ、多くの人々が自分たちのニーズと価値観を反映したAIに共同で取り組むことができるようにします。オープンさは研究とAI全体に広範な視点を提供する一方で、リスクコントロールの少ない状況に直面します。 MLアーティファクトのモデレーションには、これらのシステムのダイナミックで急速に進化する性質による独自の課題があります。実際、MLモデルがより高度になり、ますます多様なコンテンツを生成する能力を持つようになると、有害なまたは意図しない出力の可能性も増大し、堅牢なモデレーションと評価戦略の開発が必要になります。さらに、MLモデルの複雑さと処理するデータの膨大さは、潜在的なバイアスや倫理的な懸念を特定し対処する課題を悪化させます。 ホストとして、私たちはユーザーや世界全体に対して潜在的な害を拡大する責任を認識しています。これらの害は、特定の文脈に依存して少数派コミュニティに不公平に影響を与えることが多いです。私たちは、各文脈でプレイしている緊張関係を分析し、会社とHugging Faceコミュニティ全体で議論するアプローチを取っています。多くのモデルが害を増幅する可能性がありますが、特に差別的なコンテンツを含む場合、最もリスクの高いモデルを特定し、どのような対策を取るべきかを判断するための一連の手順を踏んでいます。重要なのは、さまざまなバックグラウンドを持つアクティブな視点が、異なる人々のグループに影響を与える潜在的な害を理解し、測定し、緩和するために不可欠であるということです。 私たちは、オープンソースの科学が個人を力付け、潜在的な害を最小限に抑えるために、ツールや保護策を作成するとともに、ドキュメンテーションの実践を改善しています。 倫理的なカテゴリ 私たちの仕事の最初の重要な側面は、価値観とステークホルダーへの配慮を優先するML開発のツールとポジティブな例を促進することです。これにより、ユーザーは具体的な手順を踏むことで未解決の問題に対処し、ML開発の標準的な実践に代わる可能性のある選択肢を提示することができます。 ユーザーが倫理に関連するMLの取り組みを発見し、関わるために、私たちは一連のタグを編纂しました。これらの6つの高レベルのカテゴリは、コミュニティメンバーが貢献したスペースの分析に基づいています。これらは、倫理的な技術について無専門用語の方法で考えるための設計されています: 厳密な作業は、ベストプラクティスを考慮して開発することに特に注意を払います。MLでは、これは失敗事例の検証(バイアスや公正性の監査を含む)、セキュリティ対策によるプライバシーの保護、および潜在的なユーザー(技術的および非技術的なユーザー)がプロジェクトの制約について知らされることを意味します。 コンセントフルな作業は、これらの技術を使用し、影響を受ける人々の自己決定を支援します。 社会的に意識の高い作業は、技術が社会、環境、科学の取り組みを支援する方法を示しています。 持続可能な作業は、機械学習を生態学的に持続可能にするための技術を強調し、探求します。 包括的な作業は、機械学習の世界でビルドし、利益を享受する人々の範囲を広げます。 探求的な作業は、コミュニティに技術との関係を再考させる不公正さと権力構造に光を当てます。 詳細はhttps://huggingface.co/ethicsをご覧ください。 これらの用語を探してください。新しいプロジェクトで、コミュニティの貢献に基づいてこれらのタグを使用し、更新していきます! セーフガード オープンリリースを「全てか無し」の視点で見ることは、MLアーティファクトのポジティブまたはネガティブな影響を決定する広範な文脈の多様性を無視しています。MLシステムの共有と再利用の方法に対するより多くの制御レバーがあることで、有害な使用や誤用を促進するリスクを減らすことができ、共同開発と分析をサポートします。よりオープンでイノベーションに参加できる環境を提供します。 私たちは、直接貢献者と関わり、緊急の問題に対処してきました。さらに進めるために、私たちはコミュニティベースのプロセスを構築しています。このアプローチにより、Hugging Faceの貢献者と貢献に影響を受ける人々の両方が、プラットフォームで利用可能なモデルとデータに関して制限、共有、追加のメカニズムについて情報提供することができます。私たちは、アーティファクトの起源、開発者によるアーティファクトの取り扱い、アーティファクトの使用状況について特に注意を払います。具体的には、次のような取り組みを行っています: コミュニティがMLアーティファクトやコミュニティコンテンツ(モデル、データセット、スペース、または議論)がコンテンツガイドラインに違反しているかどうかを判断するためのフラッグ機能を導入しました。 ハブのユーザーが行動規範に従っているかを確認するために、コミュニティのディスカッションボードを監視しています。 最もダウンロードされたモデルについて、社会的な影響やバイアス、意図された使用法と範囲外の使用法を詳細に説明するモデルカードを堅牢に文書化しています。…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us