Learn more about Search Results GauGAN

「条件付き生成敵対的ネットワークとは何ですか?」

CGAN(Conditional Generative Adversarial Networks)は、特定のパラメータやラベルをGANに組み込むことで、データ作成プロセスを誘導します

仕事を楽にすることができるトップ140以上の生成AIツール

はじめに 人工知能(AI)は、さまざまな分野で深刻な変革を引き起こし、私たちの働き方、創造力、学び方、相互作用方法を再構築しています。このAIによる冒険に参加しましょう。イノベーションは限りなく広がり、未来はコードとアルゴリズムによって形作られ、私たちの生活を変える潜在能力を持っています。可能性は人間の想像力の範囲とAIが現実に変える能力によってしか制約されません。未来へようこそ、そこでは可能性は無限大です。 AIビデオ生成および編集ツール Synthesia: Synthesiaは、ビデオ制作を革新するAIビデオ生成ツールです。AIアバターやナレーションを使用して、120以上の言語でプロフェッショナルなビデオを作成することができます。俳優、カメラ、マイクの必要性をなくし、ビデオ制作を迅速かつ効果的に行うことができます。 Runway: Runwayは、開発者やコンテンツクリエーターにAIパワーを与えるビデオ編集ツールです。ビデオコンテンツに対して細かい制御を提供する包括的な編集ツールを提供し、ビデオの品質を向上させます。 Unscreen: Unscreenは、ビデオや画像から背景をAIで除去することに特化しており、グリーンスクリーン効果の作成を簡素化します。視覚効果を向上させたいビデオクリエーターにとって必須のツールです。 VREW: VREWは、ビデオ編集を簡素化する高度なAIビデオエディターです。正確で簡単な編集が可能であり、ビデオ制作プロセスを効率化します。 Descript: Descriptは、ビデオ編集、転写、音声編集の機能を備えた多目的なAIエディターです。コンテンツクリエーターやポッドキャスター向けに特化した包括的なツールです。 Nova A.I.: Nova A.I.は、AIを使用したビデオ編集機能を提供し、ビデオの品質を向上させることができます。特殊効果を簡単に追加し、ビデオの視覚的魅力を高めることができます。 Reface(顔の入れ替えビデオ): この生成型AIツールは、ビデオ内で顔をシームレスに入れ替えて、エンターテイニングでバイラルなコンテンツを作成します。クリエイティブなビデオプロジェクトには楽しいツールです。 Topaz Video AI: Topaz Video…

テキストからビデオへのモデルの深掘り

ModelScopeで生成されたビデオサンプルです。 テキストからビデオへの変換は、生成モデルの驚くべき進歩の長いリストの中で次に来るものです。その名前の通り、テキストからビデオへの変換は、時間的にも空間的にも一貫性のある画像のシーケンスをテキストの説明から生成する、比較的新しいコンピュータビジョンのタスクです。このタスクは、テキストから画像への変換と非常によく似ているように思えるかもしれませんが、実際にははるかに難しいものです。これらのモデルはどのように動作し、テキストから画像のモデルとはどのように異なり、どのようなパフォーマンスが期待できるのでしょうか? このブログ記事では、テキストからビデオモデルの過去、現在、そして未来について論じます。まず、テキストからビデオとテキストから画像のタスクの違いを見直し、条件付きと非条件付きのビデオ生成の独特の課題について話し合います。さらに、テキストからビデオモデルの最新の開発について取り上げ、これらの方法がどのように機能し、どのような能力があるのかを探ります。最後に、Hugging Faceで取り組んでいるこれらのモデルの統合と使用を容易にするための取り組みや、Hugging Face Hub内外でのクールなデモやリソースについて話します。 さまざまなテキストの説明を入力として生成されたビデオの例、Make-a-Videoより。 テキストからビデオ対テキストから画像 最近の開発が非常に多岐にわたるため、テキストから画像の生成モデルの現在の状況を把握することは困難かもしれません。まずは簡単に振り返りましょう。 わずか2年前、最初のオープンボキャブラリ、高品質なテキストから画像の生成モデルが登場しました。VQGAN-CLIP、XMC-GAN、GauGAN2などの最初のテキストから画像のモデルは、すべてGANアーキテクチャを採用していました。これらに続いて、2021年初めにOpenAIの非常に人気のあるトランスフォーマーベースのDALL-E、2022年4月のDALL-E 2、Stable DiffusionとImagenによって牽引された新しい拡散モデルの新たな波が続きました。Stable Diffusionの大成功により、DreamStudioやRunwayML GEN-1などの多くの製品化された拡散モデルや、Midjourneyなどの既存製品との統合が実現しました。 テキストから画像生成における拡散モデルの印象的な機能にもかかわらず、拡散および非拡散ベースのテキストからビデオモデルは、生成能力においてはるかに制約があります。テキストからビデオは通常、非常に短いクリップで訓練されるため、長いビデオを生成するためには計算コストの高いスライディングウィンドウアプローチが必要です。そのため、これらのモデルは展開とスケーリングが困難であり、文脈と長さに制約があります。 テキストからビデオのタスクは、さまざまな面で独自の課題に直面しています。これらの主な課題のいくつかには以下があります: 計算上の課題:フレーム間の空間的および時間的な一貫性を確保することは、長期的な依存関係を伴い、高い計算コストを伴います。そのため、このようなモデルを訓練することは、ほとんどの研究者にとって手の届かないものです。 高品質なデータセットの不足:テキストからビデオの生成のためのマルチモーダルなデータセットは希少で、しばしばスパースに注釈が付けられているため、複雑な動きのセマンティクスを学ぶのが難しいです。 ビデオのキャプションに関する曖昧さ:モデルが学習しやすいようにビデオを記述する方法は未解決の問題です。完全なビデオの説明を提供するためには、複数の短いテキストプロンプトが必要です。生成されたビデオは、時間の経過に沿って何が起こるかを物語る一連のプロンプトやストーリーに基づいて条件付ける必要があります。 次のセクションでは、テキストからビデオへの進展のタイムラインと、これらの課題に対処するために提案されたさまざまな手法について別々に議論します。高レベルでは、テキストからビデオの作業では以下のいずれかを提案しています: 学習しやすいより高品質なデータセットの作成。 テキストとビデオのペアデータなしでこのようなモデルを訓練する方法。 より計算効率の良い方法で長く、高解像度のビデオを生成する方法。 テキストからビデオを生成する方法…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us