Learn more about Search Results Flan T5 XL

『LangChain & Flan-T5 XXL の解除 | 効率的なドキュメントクエリのガイド』

はじめに 大規模言語モデル(LLM)として知られる特定の人工知能モデルは、人間のようなテキストを理解し生成するために設計されています。”大規模”という用語は、それらが持つパラメータの数によってしばしば定量化されます。たとえば、OpenAIのGPT-3モデルは1750億個のパラメータを持っています。これらのモデルは、テキストの翻訳、質問への回答、エッセイの執筆、テキストの要約など、さまざまなタスクに使用することができます。LLMの機能を示すリソースやそれらとチャットアプリケーションを設定するためのガイダンスが豊富にありますが、実際のビジネスシナリオにおける適用可能性を徹底的に検討した試みはほとんどありません。この記事では、LangChain&Flan-T5 XXLを活用して、大規模言語ベースのアプリケーションを構築するためのドキュメントクエリングシステムを作成する方法について学びます。 学習目標 技術的な詳細に踏み込む前に、この記事の学習目標を確立しましょう: LangChainを活用して大規模言語ベースのアプリケーションを構築する方法を理解する テキスト対テキストフレームワークとFlan-T5モデルの簡潔な概要 LangChain&任意のLLMモデルを使用してドキュメントクエリシステムを作成する方法 これらの概念を理解するために、これらのセクションについて詳しく説明します。 この記事は、データサイエンスブログマラソンの一部として公開されました。 LLMアプリケーションの構築におけるLangChainの役割 LangChainフレームワークは、チャットボット、生成型質問応答(GQA)、要約など、大規模言語モデル(LLM)の機能を活用したさまざまなアプリケーションの開発に設計されています。LangChainは、ドキュメントクエリングシステムを構築するための包括的なソリューションを提供します。これには、コーパスの前処理、チャンキングによるこれらのチャンクのベクトル空間への変換、クエリが行われたときに類似のチャンクを特定し、適切な回答にドキュメントを洗練するための言語モデルの活用が含まれます。 Flan-T5モデルの概要 Flan-T5は、Googleの研究者によって商業的に利用可能なオープンソースのLLMです。これはT5(Text-To-Text Transfer Transformer)モデルの派生モデルです。T5は、”テキスト対テキスト”フレームワークでトレーニングされた最先端の言語モデルです。さまざまなNLPタスクを実行するために、タスクをテキストベースの形式に変換することでトレーニングされます。FLANは、Finetuned Language Netの略です。 ドキュメントクエリシステムの構築に入りましょう LangChainとFlan-T5 XXLモデルを使用して、Google Colabの無料版でこのドキュメントクエリシステムを構築することができます。以下の手順に従ってドキュメントクエリシステムを構築しましょう: 1:必要なライブラリのインポート 以下のライブラリをインポートする必要があります:…

Google AIがFlan-T5をオープンソース化 NLPタスクにおいてテキスト対テキストアプローチを使用するトランスフォーマーベースの言語モデル

大規模な言語モデル、例えばPaLM、Chinchilla、およびChatGPTは、自然言語処理(NLP)のタスクを実行する新たな可能性を開いています。先行研究では、指示に基づくさまざまなNLPタスクで言語モデルを微調整する指示調整が、指示を与えられた未知のタスクを実行する能力をさらに向上させることが示されています。本論文では、オープンソースの指示一般化イニシアティブのアプローチと結果を比較し、彼らの微調整手順と戦略を評価しています。 この研究では、指示調整方法の詳細に焦点を当て、個々の要素を取り除いて直接比較しています。彼らは、「Flan 2022 Collection」という用語で、データ収集やデータと指示調整プロセスに適用される手法に焦点を当て、Flan 2022をPaLM 540Bと組み合わせた新興かつ最先端の結果に重点を置いたデータ収集の最も包括的なコレクションを公開しています。このコレクションには、数千のプレミアムなテンプレートとより良いフォーマットパターンが追加されています。 彼らは、評価ベンチマークのすべてで、このコレクションで訓練されたモデルが、オリジナルのFlan 2021 their、T0++ their、Super-Natural Instructions their、およびOPT-IML theirのような他の公開コレクションよりも優れたパフォーマンスを発揮することを示しています。同じサイズのモデルにおいて、MMLUおよびBIG-Bench Hardの評価ベンチマークにおいて4.2%以上および8.5%の改善が見られます。Flan 2022のアプローチの分析によると、これらの堅牢な結果は、より大きくより多様なタスクのコレクションと、ゼロショット、フューショット、およびチェーンオブソートのプロンプトを使用したトレーニングなど、いくつかの直感的な戦略による微調整とデータ拡張の結果であると言えます。 例えば、フューショットプロンプトの10%の増加は、ゼロショットプロンプトの結果を2%以上改善します。また、入出力対の反転を行うことでタスクのソースをバランスさせ、タスクの多様性を向上させることが、パフォーマンスにとって重要であることも示されています。シングルタスクの微調整では、得られたFlan-T5モデルはT5モデルよりも収束が速く、より優れた性能を発揮するため、指示調整済みのモデルは後続のアプリケーションにおいてより効率的な計算的な出発点を提供します。これらの結果とツールを公開することで、指示の調整に利用できるリソースが効率的になり、より汎用性の高い言語モデルの開発を加速することが期待されています。 本研究の主な貢献は以下の通りです: • 方法論的な貢献:ゼロショットおよびフューショットのキューを混合してトレーニングすることで、両環境で有意に優れた結果を生み出すことを示す。 • 効率的な指示調整のための主要な手法を測定および示し、セクション3.3のスケーリング、入力反転を使用したタスクの多様化の向上、チェーンオブソートのトレーニングデータの追加、およびさまざまなデータソースのバランスを取ることを含む。 • 結果:これらの技術的な決定により、利用可能なオープンソースの指示調整コレクションと比較して、保留中のタスクパフォーマンスが3〜17%向上します。 •…

「Amazon SageMaker JumpStartを使用して、2行のコードでファウンデーションモデルを展開して微調整する」

「Amazon SageMaker JumpStart SDKのシンプル化されたバージョンの発表をお知らせすることを楽しみにしていますこのSDKを使用することで、基礎モデルの構築、トレーニング、デプロイが簡単に行えます予測のためのコードも簡略化されていますこの記事では、わずか数行のコードで基礎モデルの使用を開始するために、簡略化されたSageMaker JumpStart SDKの使用方法をご紹介します」

「包括的な革新:Amazon SageMakerでのHack.The.Bias」

この投稿は、ETH ZürichのAWS学生ハッカソンチームのメンバーであるDaniele Chiappalupiと共同で執筆されましたAmazon SageMaker JumpStartを使用して、誰でも簡単に機械学習(ML)を始めることができますこの投稿では、大学のハッカソンチームがSageMaker JumpStartを使用して、ユーザーが識別して削除するのを支援するアプリケーションを迅速に構築した方法を紹介します

「Amazon SageMaker JumpStartを使用して、Generative AIとRAGを活用して安全なエンタープライズアプリケーションを構築する」

この投稿では、AWS Amplifyを使用してセキュアなエンタープライズアプリケーションを構築し、Amazon SageMaker JumpStart基盤モデル、Amazon SageMakerエンドポイント、およびAmazon OpenSearch Serviceを呼び出して、テキストからテキストまたはテキストから画像への変換、およびRetrieval Augmented Generation(RAG)の作成方法を説明しますこの投稿を参考にして、AWSサービスを使用してジェネレーティブAI領域のセキュアなエンタープライズアプリケーションを構築するために利用できます

「Amazon SageMakerを使用したヘルスケアの要約オプションの探索」

現在の急速に進化する医療の現場では、医師は介護者のメモ、電子健康記録、画像報告書など、さまざまな情報源から大量の臨床データに直面しています患者のケアには不可欠なこの情報の富は、医療専門家にとっても圧倒的で時間のかかるものになります効率的に要約し、抽出することは、

リトリーバル・オーグメンテッド・ジェネレーションを使用して、安定した拡散プロンプトを改善しましょう

テキストから画像を生成することは、メディアやエンターテイメント、ゲーム、ECサイトの商品ビジュアライゼーション、広告やマーケティング、建築設計やビジュアライゼーション、芸術創作、医療画像など、さまざまな分野で応用される急速に成長している人工知能の分野ですStable Diffusionは、数秒で高品質な画像を作成する力を与えるテキストから画像へのモデルです11月には[…]

「エキスパートのミックスについて解説」

ミクストラル8x7Bのリリース(発表、モデルカード)により、トランスフォーマのクラスがオープンAIコミュニティで最も話題となっています。それがエキスパートの混合(Mixture of Experts、略してMoEs)です。このブログ記事では、MoEsの構成要素、トレーニング方法、および推論時の考慮事項について見ていきます。 さあ、深く掘り下げてみましょう! 目次 ミクストラルとは何ですか? MoEsの簡潔な歴史 スパース性とは何ですか? MoEsのトークンのロードバランシング MoEsとトランスフォーマ スイッチトランスフォーマ ルータZ損失によるトレーニングの安定化 エキスパートは何を学ぶのですか? エキスパートの数をスケーリングすると事前トレーニングにどのような影響を与えるのですか? MoEsの微調整 スパースMoEsと密なモデルの使用時期はいつですか? MoEsを効果的に活用するために エキスパート並列処理 能力係数と通信コスト サービングテクニック 効率的なトレーニング オープンソースのMoEs ワークのエキサイティングな方向性 いくつかのリソース…

「松ぼっくりベクトルデータベースとAmazon SageMaker JumpStartのLlama-2を使用したリトリーバル増強生成によって幻覚を軽減する」

産業全体でのLLMの採用は止まることのないように見えますが、それらは新しいAIの波を支えるより広範な技術エコシステムの一部です多くの対話AIのユースケースでは、Llama 2、Flan T5、BloomのようなLLMがユーザーのクエリに応答するために必要ですこれらのモデルは質問に答えるためにパラメトリックな知識に依存しています モデルは[…]

「Amazon SageMakerを使用して数百のモデルにスケールされたファウンデーションモデルの推論 – パート1」

「ファンデーションモデル(FM)の民主化が一般化し、AIを活用したサービスへの需要が増加するにつれ、ソフトウェアプロバイダーは、組織内のデータ科学者および外部の顧客を対象にしたマルチテナントをサポートする機械学習(ML)プラットフォームを利用しようとしていますますます多くの企業が、ファンデーションモデルの利用価値に気付き始めています...」

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us