Learn more about Search Results Fix with AI and Generate with AI

ジェンAIに関するトップ10の研究論文

イントロダクション 自然言語理解の常に進化する風景の中で、研究者たちは革新的なアプローチを通じて可能性の限界を em>押し上げることを続けています。本記事では、生成AI(GenAI)に関する画期的な研究論文のコレクションについて探求していきます。これらの研究は、人間の好みとの一致度向上からテキストの説明から3Dコンテンツを生成するという様々な側面にわたって言語モデルを探究しています。これらの研究は学術的な論議に貢献すると同時に、自然言語処理の未来を形作る可能性のある実践的な洞察を提供しています。これらの啓発的な調査を通じて旅を始めましょう。 GenAIに関するトップ10の研究論文 GenAIに関する数百の研究論文の中から、以下は私たちのトップ10の選り抜きです。 1. 生成プリトレーニングによる言語理解の向上 この研究論文は、非教示型のプリトレーニングと教示型のファインチューニングを組み合わせて自然言語理解タスクを強化するための半教師付きアプローチを探求しています。この研究では、Transformerアーキテクチャに基づいたタスクに依存しないモデルを利用しています。これにより、多様な未ラベルのテキストでの生成プリトレーニングとその後の識別的ファインチューニングによって、さまざまな言語理解ベンチマークでのパフォーマンスが大幅に向上することが明らかになりました。 このモデルは、常識的な推論において8.9%、質問応答において5.7%、テキスト言い換えにおいて1.5%といった注目すべき改善を達成しました。この研究は、大規模な未ラベルのコーパスをプリトレーニングに活用し、ファインチューニング中のタスクに意識した入力変換を行うことが、教師なし学習を自然言語処理や他の領域で進めるための貴重な洞察を提供しています。 論文はこちらで入手できます:https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf 2. 人間フィードバックを用いた強化学習:悲観主義を通じたダイナミックな選択の学習 この生成AIに関する研究論文は、オフラインでの人間フィードバックによる強化学習(RLHF)の難しい領域に深入りしています。この研究は、人間の選択に影響を受けたトラジェクトリの集合から、マルコフ決定過程(MDP)における人間の基盤と最適方策を把握することを目指しています。この研究は、経済計量学に根ざしたダイナミックディスクリートチョイス(DDC)モデルに焦点を当て、有界合理性を持った人間の意思決定をモデル化します。 提案されたDynamic-Choice-Pessimistic-Policy-Optimization(DCPPO)メソッドは、次の3つのステージで構成されています。それらは、人間の行動方針と価値関数の推定、人間の報酬関数の再現、および事実に近い最適方策のための悲観的価値反復の呼び出しです。この論文は、動的なディスクリートチョイスモデルによるオフポリシーオフラインRLHFについての理論的な保証を提供しています。分布のシフトや次元のサブオプティマリティの課題への対処についての洞察も提供しています。 論文はこちらで入手できます:https://arxiv.org/abs/2305.18438 3. ニューラル確率言語モデル この研究論文は、次元の呪いによって生じる統計的言語モデリングの課題に取り組み、未見の単語の連続列に対して一般化する難しさに焦点を当てています。提案された解決策は、単語の分散表現を学習することで、各トレーニング文がモデルに対して意味的に隣接する文について情報を提供することを可能にします。単語の表現と単語列の確率関数を同時に学習することで、モデルは一般化性能を向上させることができます。 ニューラルネットワークを用いた実験結果は、最先端のn-gramモデルに比べて大幅な改善を示しており、長い文脈を活用するアプローチの効果を示しています。論文は、学習された分散表現によって次元の課題に対処するモデルの能力を強調しながら、潜在的な将来の改善の可能性についても言及しています。 論文はこちらで入手できます:https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf 4. BERT:言語理解のための深層双方向トランスフォーマーの事前学習 GenAIの研究論文では、未ラベル化されたテキストに対して双方向の事前学習を行うために設計された画期的な言語表現モデルであるBERTが紹介されています。従来のモデルとは異なり、BERTはすべてのレイヤーで左右の文脈に依存し、タスク固有の修正を最小限に抑えながら微調整を可能にします。BERTはさまざまな自然言語処理タスクで最先端の結果を実現し、その簡潔さと実証的なパワーを示しています。 この論文では既存の技術の制約に対処し、言語表現のための双方向の事前学習の重要性を強調しています。BERTのマスクされた言語モデル目的は、深い双方向のTransformer事前学習を促進し、タスク固有のアーキテクチャへの依存を減らし、11のNLPタスクの最先端の技術を前進させています。…

「OpenAIやLM Studioに頼らずにAutoGenを使用する方法」

イントロダクション OpenAIやLMスタジオに頼らずに、あなた自身のAIチームを作成する準備はできていますか?もはや銀行を荒らすことも、アプリをダウンロードすることもありません。llama-cpp-pythonの設定から、autogenフレームワークのヘルプを借りてローカルLLMのパワーを探求するまで。OpenAI APIに依存せず、Autogenのフルポテンシャルを引き出す準備をしましょう。 学習目標 詳細に入る前に、この記事の主な学習目標を概説しましょう: さまざまなAIライブラリとツールを評価・比較する方法を学ぶ。 llama-cpp-pythonがOpenAI APIの代替として提供できる方法を探索する。 2つの現実世界の使用例で獲得した知識を適用する: アルゴリズムメンターチームの構築と金融チャート生成の自動化。 AutoGenの改善されたユーザーエクスペリエンスを探索し、統合されたIPythonを通じて即時のコード実行結果を得る。 この記事はData Science Blogathonの一環として公開されました。 ツール紹介: llama-cpp-python、AutoGen、およびローカルLLM しかし、このテックツールキットの特別な点は何でしょうか? llama-cpp-pythonは、LLMAのような有名なモデルを含めて、ローカルでLLMを実行するためのゲートウェイです。コンピュータ上にAIのスーパースターがいるようなもので、さまざまなBLASバックエンドのサポートにより、速度は驚異的です! AutoGen AutoGenは、基盤モデルを使用するための高レベルな抽象化として機能する統一されたマルチエージェント会話フレームワークです。LLM、ツール、および人間の参加者を統合し、自動化されたチャットを通じて能力のある、カスタマイズ可能で会話形式のエージェントを結合します。エージェント同士が自律的にコミュニケーションして共同作業を行うことができ、複雑なタスクを効率的に進めることやワークフローを自動化することが可能です。 もしAutoGenの機能をより深く探求し、戦略的なAIチームビルディングをどのように支援するかを調べることに興味があるなら、当社の専用ブログ「Strategic  AI Team Building…

LangChainの発見:ドキュメントとのチャット、チャットボット翻訳、ウィキペディアとのチャット、合成データ生成

「ジェネラティブAIの世界の成長は、重要なPythonライブラリであるLangChainのおかげで可能になっています興味も最近の数ヶ月間で増しており、次のチャートで示されています」

「コスト効率の高い高性能 AI 推論用の Amazon EC2 DL2q インスタンスが一般提供開始されました」

Qualcomm AIのA.K Royさんによるゲスト記事ですAmazon Elastic Compute Cloud(Amazon EC2)DL2qインスタンスは、Qualcomm AI 100 Standardアクセラレータによってパワーアップされ、クラウド上で効率的に深層学習(DL)タスクを展開するために使用することができますDLタスクのパフォーマンスや精度を開発し、検証するためにも利用できます

LangChain チートシート — すべての秘密を1ページにまとめました

作成されたワンページは、LangChainの基本をまとめたものですこの記事では、コードのセクションを進めて行き、LangChainで成功するために必要なスターターパッケージについて説明しますLangChainにおけるモデルは…

「生成AIにおける高度なエンコーダとデコーダの力」

はじめに 人工知能のダイナミックな領域では、技術と創造性の融合が人間の想像力の限界を押し上げる革新的なツールを生み出しています。この先駆的な進歩の中には、生成型AIにおけるエンコーダーとデコーダーの洗練された世界が存在します。この進化は、芸術、言語、さらには現実との関わり方を根本的に変革します。 出典 – IMerit 学習目標 生成型AIにおけるエンコーダーとデコーダーの役割と創造的なアプリケーションへの重要性を理解する。 BERT、GPT、VAE、LSTM、CNNなどの高度なAIモデルと、データのエンコードとデコードにおける実践的な使用方法を学ぶ。 エンコーダーとデコーダーのリアルタイムアプリケーションをさまざまな分野で探求する。 AIによって生成されたコンテンツの倫理的な考慮と責任ある使用についての洞察を得る。 高度なエンコーダーとデコーダーを応用することによって創造的な協力とイノベーションのポテンシャルを認識する。 この記事はData Science Blogathonの一環として公開されました。 エンコーダーとデコーダーの台頭 テクノロジーの絶え間ない進化の中で、エンコーダーとデコーダーは人工知能(AI)と生成型AIにクリエイティブな転機をもたらしています。それらはAIが芸術、テキスト、音声などを理解し、解釈し、創造するために使用する魔法の杖のような存在です。 ここがポイントです:エンコーダーは非常に注意深い探偵のようなものです。画像、文章、音声など、様々な物事を詳細に分析します。さまざまな小さな詳細やパターンを探し、クルーを組み立てる探偵のような役割を果たします。 一方、デコーダーはクリエイティブな魔術師のような存在です。エンコーダーが見つけた情報を新たでドキドキするものへと変えます。それは魔術師が魔法の呪文に変え、芸術、詩、さらには別の言語まで作り出すようなものです。エンコーダーとデコーダーの組み合わせは、創造的な可能性の扉を開きます。 <p p="" 簡単に言えば、aiのエンコーダーとデコーダーは、探偵と魔術師が共同で働いているようなものです。探偵が世界を理解し、魔術師がその理解を素晴らしい創造物に変えます。これが芸術、言語、さらには他の様々な分野でゲームを変えつつある方法で、技術が革新的でありながらも卓越した創造性を備えていることを示しています。 構成要素:エンコーダーとデコーダー 生成型AIの核心には、データを一つの形式から別の形式に変換するエンコーダーとデコーダーという基本的な構成要素があり、これが創造的AIの核心となります。彼らの役割を理解することで、彼らが解き放つ膨大な創造力の可能性を把握する助けになります。 エンコーダー:…

『今日、企業が実装できる5つのジェネレーティブAIのユースケース』

様々な産業で、エグゼクティブたちはデータリーダーにAIを活用した製品を作り上げるよう求めていますそれにより時間の節約や収益の促進、競争上の優位性の獲得を目指していますまた、OpenAIのようなテックジャイアントも同様です…

「LLMsを使用した用語の翻訳(GPTとVertex AI/Google Bard)」

ChatGPTのようなLLMは、人間よりも正確に翻訳を行うことができるのでしょうか?私たちが利用できるLLMのオプションは何ですか?さまざまな方法で翻訳を行うために生成型AIを使用する方法について詳しく学びましょう

Amazon SageMakerのマルチモデルエンドポイントを使用して、TorchServeを使ってGPU上で複数の生成AIモデルを実行し、推論コストを最大75%節約できます

最近、生成AIアプリケーションは広範な注目と想像力を引きつけています顧客はGPU上で生成AIモデルを展開したいと思っていますが、同時にコストにも気を使っていますSageMaker MMEはGPUインスタンスをサポートしており、このようなタイプのアプリケーションには最適なオプションです本日は、TorchServeがSageMaker MMEをサポートすることをお知らせしますこの新しいモデルサーバーサポートにより、TorchServeの顧客が最も馴染みのあるサービングスタックを使用しながら、MMEのすべての利点を活用することができますこの記事では、Stable DiffusionやSegment Anything Modelなどの生成AIモデルをTorchServeを使用してSageMaker MME上でホストし、アーティストやコンテンツクリエーターが作品をより速く開発し、イテレーションするための言語による編集ソリューションの構築方法を示します

「Amazon SageMaker JumpStart上で、生成型AIベースのコンテンツモデレーションソリューションを構築する」

この記事では、マルチモーダルな事前学習と大規模な言語モデル(LLM)を使用した画像データのコンテンツモデレーションの新しい手法を紹介しますマルチモーダルな事前学習により、興味のある質問のセットに基づいて直接画像のコンテンツをクエリすることができ、モデルはこれらの質問に答えることができますこれにより、ユーザーは画像とチャットして、組織のポリシーに違反するような不適切なコンテンツが含まれているかを確認することができますLLMの強力な生成能力を利用して、安全/危険なラベルやカテゴリータイプを含む最終的な意思決定を生成しますさらに、プロンプトを設計することで、LLMに指定された出力形式(JSON形式など)を生成させることができます設計されたプロンプトテンプレートにより、LLMは画像がモデレーションポリシーに違反しているかどうかを判断し、違反のカテゴリーを特定し、なぜ違反しているのかを説明し、構造化されたJSON形式で出力を提供することができます

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us