Learn more about Search Results EfficientNet
- You may be interested
- 「Cheetorと会ってください:幅広い種類の...
- 「H1 2023 アナリティクス&データサイエ...
- 正しい報酬によって望ましくない目標が生...
- Pythonを使用した画像処理の紹介
- 「LLM革命:言語モデルの変革」
- カスタムGPTが登場し、AIにすべてへの影響...
- 「俳優たちが、スタジオがAIレプリカを使...
- MLモデルの最適化とデバッグにSHAP値を使...
- 「ビジョンを備えたGPT-4を使用して、芸術...
- 3Dインスタンスセグメンテーションにおけ...
- 再生医療テキスト生成が臨床NLPタスクを革...
- 初期段階の企業や初めての創業者が経済的...
- 「欧州宇宙機関は、AIが衛星ナビゲーショ...
- 「人生をゲームとして見るならば、それを...
- 「あなたのAIが意識しているかどうかを判...
「CNN(畳み込みニューラルネットワーク)におけるポイントワイズ畳み込みの探求:全結合層の置き換え」
はじめに 畳み込みニューラルネットワーク(CNN)は、画像とパターンを理解する上で重要な役割を果たし、深層学習の世界を変えました。この旅は、YanがLeNetアーキテクチャを紹介したころから始まり、今日ではさまざまなCNNを選択できます。従来、これらのネットワークは、特に異なるカテゴリに分類する場合には、全結合層に依存していました。しかし、そこに変化の風が吹いています。私たちは異なるアーキテクチャを探求しており、畳み込みニューラルネットワークにおける新しい方法であるPointwise Convolutionを使用しています。まるで新しい道を進むような感覚です。このアプローチは、通常の全結合層の使用方法に挑戦し、ネットワークをよりスマートで高速にするいくつかのクールな利点をもたらします。私たちと一緒にこの探求に参加し、Pointwise Convolutionの理解に深入りし、ネットワークの効率的な動作と優れたパフォーマンスの向上がいかに役立つかを発見しましょう。 学習目標 LeNetなどの初期モデルから現在使用されている多様なアーキテクチャまで、畳み込みニューラルネットワーク(CNN)の歴史を理解する CNNにおける従来の全結合層に関連する計算の重さと空間情報の損失について探求する Pointwise Convolutionの効率的な特徴抽出方法を探求する ネットワークの変更やハイパーパラメータのチューニングなど、CNNにおけるPointwise Convolutionの実装に必要な実践的なスキルを開発する この記事はデータサイエンスブログマラソンの一環として公開されました。 全結合層の理解 従来の畳み込みニューラルネットワーク(CNN)では、全結合層は重要な役割を果たし、ある層のすべてのニューロンを次の層のすべてのニューロンに接続する密な相互接続構造を形成しています。これらの層は、画像分類などのタスクで使用され、ネットワークが特定の特徴と特定のクラスを関連付けることを学習します。 要点 グローバルコネクティビティ:全結合層はグローバルな接続を作成し、ある層の各ニューロンが次の層のすべてのニューロンに接続されることを可能にします。 パラメータの重さ:全結合層には非常に多くのパラメータが含まれるため、モデルのパラメータ数が大幅に増加することがあります。 空間情報の損失:全結合層に入力データを平坦化することで、元の画像から空間情報が失われる場合があり、特定のアプリケーションで欠点となる可能性があります。 計算の重さ:全結合層に関連する計算負荷は、ネットワークの規模が拡大するにつれて特に大きくなる場合があります。 実践における使用法 畳み込み層の後:全結合層は通常、畳み込み層の後に使用されます。畳み込み層は入力データから特徴を抽出します。 密な層:一部の場合、全結合層は「密な」層と呼ばれ、すべてのニューロンを接続する役割が強調されます。 変更の必要性とは? 通常の畳み込みニューラルネットワーク(CNN)における全結合層の基本的な理解ができたので、なぜ一部の人々が異なるものを探しているのかについて話しましょう。全結合層は役割を果たしていますが、いくつかの課題を抱えています。コンピューターに負荷がかかり、多くのパラメータを使用し、時には画像から重要な詳細を失うことがあります。…
「コスト効率の高い高性能 AI 推論用の Amazon EC2 DL2q インスタンスが一般提供開始されました」
Qualcomm AIのA.K Royさんによるゲスト記事ですAmazon Elastic Compute Cloud(Amazon EC2)DL2qインスタンスは、Qualcomm AI 100 Standardアクセラレータによってパワーアップされ、クラウド上で効率的に深層学習(DL)タスクを展開するために使用することができますDLタスクのパフォーマンスや精度を開発し、検証するためにも利用できます
画像埋め込みのためのトップ10の事前訓練モデル、データサイエンティストが知っておくべきもの
「コンピュータビジョンの急速な進化– 画像分類のユースケースは、転移学習の台頭によってさらに加速されています大規模な画像データセットを使用してコンピュータビジョンニューラルネットワークモデルを訓練するには、多くの計算リソースと時間が必要です幸いなことに、この時間とリソースは…」
スタンフォード大学の研究者がRT-Sketchを紹介します:目標仕様としての手描きスケッチを通じた視覚模倣学習の向上
研究者は、手描きスケッチを視覚模倣学習における目標指定の未開拓の手法として紹介しました。これらのスケッチは、自然言語の曖昧さと画像の過度な具体性の両方のバランスを取ることで、ユーザーが迅速にタスク目的を伝えることを可能にします。彼らの研究では、手描きの望ましいシーンのスケッチを入力とし、対応するアクションを生成する目標条件付きの操作方針であるRT-Sketchを提案しています。ペアトラジェクトリと合成スケッチによる訓練を行ったRT-Sketchは、さまざまな操作タスクで堅牢なパフォーマンスを示し、不明瞭な目標や視覚的な邪魔物を持つシナリオで言語ベースのエージェントを凌駕しています。 この研究では、自然言語や画像など従来の目標条件付き模倣学習の手法について詳しく調査し、これらの表現の限界を強調し、スケッチなどのより抽象的で精確な代替手法が必要であることを論じています。また、画像をスケッチに変換し、それらを目標ベースの模倣学習に統合するための進行中の研究にも言及しています。さらに、目標条件付き学習において言語や画像を目標とする先行研究を参照し、両者を組み合わせた多モーダルアプローチについても探究しています。デモンストレーションデータの終端画像に対する後知恵のあるラベリングにおける画像からスケッチへの変換の利用についても議論しています。 この手法は、不正確な場合がある自然言語コマンドと、過度に詳細で一般化が困難な目標画像の欠点を指摘し、視覚模倣学習における目標指定の有望な代替手法として手描きスケッチを提案しています。これらのスケッチはユーザーフレンドリーであり、既存のポリシーアーキテクチャRT-Sketchに統合されています。この目標条件付きポリシーは、望ましいシーンの手描きスケッチを入力とし、対応するアクションを生成します。 RT-Sketchは、手描きシーンスケッチを入力とし、ペアトラジェクトリと合成目標スケッチのデータセットで訓練されます。元のRT-1ポリシーを修正し、FiLM言語トークン化を削除し、EfficientNetへの目標画像またはスケッチの連結を入力とします。訓練には行動クローニングを使用して、観測された行動とスケッチの目標を最小化します。画像からスケッチへの変換生成ネットワークは、RT-1データセットに目標スケッチを追加するために使用され、RT-Sketchの訓練に役立ちます。この研究では、フリーハンド、線画、カラー表現など、さまざまな詳細のスケッチの処理能力を評価しています。 この研究は、単純なシナリオでは、RT-Sketchが画像や言語に基づくエージェントと比較して、競争力のあるパフォーマンスを示すことを示しました。手描きスケッチから目標を達成する能力は特に注目に値します。RT-Sketchは、不明瞭さや視覚的な干渉物といった問題に直面した場合に、言語ベースの目標に比べて高い堅牢性を示します。評価は、ピクセル間の距離を使用した空間的な精度の計測と、人間によるセマンティックおよび空間的な整合性の7段階リカートスケールを使用した評価を含みます。研究はその限界を認識しながらも、さまざまなユーザーのスケッチや場合による誤ったスキルの実行に対するRT-Sketchの汎用性をテストする必要性を強調しています。 まとめると、手描きスケッチを利用した目標条件付きの操作方針であるRT-Sketchは、さまざまな操作タスクにおいて、確立された言語または目標画像ベースのポリシーと比較可能なパフォーマンスを示します。視覚的な干渉と目標の曖昧さに対する高い耐性を持っています。RT-Sketchの柔軟性は、単純な線画から複雑でカラフルな描写まで、さまざまな具体性のスケッチを理解する能力が示されています。将来の研究では、手描きイラストの有用性を拡大し、組み立てタスクにおいて図面やダイアグラムなどのより構造化された表現を包括する可能性があります。
In this translation, Notes is translated to メモ (memo), CLIP remains as CLIP, Connecting is translated to 連結 (renketsu), Text is translated to テキスト (tekisuto), and Images is translated to 画像 (gazo).
上記論文の著者たちは、最小限またはほとんど監督を必要とせずに、さまざまなタスクに使用できる画像の良い表現(特徴)を生成することを目指しています画像によって生成された使い勝手の良い特徴...
「セマンティックカーネルへのPythonistaのイントロ」
ChatGPTのリリース以来、大規模言語モデル(LLM)は産業界とメディアの両方で非常に注目されており、これによりLLMを活用しようとする前例のない需要が生まれました...
「転移学習の非合理的な効果」
「複雑なディープラーニングニューラルネットワークのトレーニングには、計算効率の高さ、大規模なデータコーパスの利用可能性、およびより優れた特徴学習アーキテクチャが必要です」
「LLMランドグラブ:AWS、Azure、およびGCPがAIを巡って闘っている」
企業クラウドプラットフォーム間でのAIの優位性を競うレースが始まっています大手および中小のプロバイダーが自分たちの賭けをする中、過去の技術的な対立が急速な変化の時に教訓を提供しています
数値計算のための二分法の使用方法
コンピュータ科学と数学のサブフィールドである数値計算は、コンピュータを用いた数値計算手法とアルゴリズムを用いて数学の問題を解決することに焦点を当てていますこれは…
「糖尿病網膜症の段階を予測して眼の盲目を防ぐ」
はじめに 糖尿病性網膜症は、網膜の血管に変化を引き起こす眼の状態です。無治療のまま放置すると、視力の喪失につながります。そのため、糖尿病性網膜症の段階を検出することは、目の失明を防ぐために重要です。このケーススタディは、糖尿病性網膜症の症状から目の失明を検出することについてのもので、データはさまざまな撮影条件で眼底カメラ(眼の後ろを写真に撮るカメラ)を使用して、さまざまな訓練された臨床専門家によって田舎の地域から収集されました。これらの写真は、2019年にKaggleが行ったコンペティション(APTOS 2019 Blindness Detection)で糖尿病性網膜症の段階を検出するために使用され、私たちのデータは同じKaggleのコンペティションから取得されました。この糖尿病性網膜症の早期検出は、治療を迅速化し、視力の喪失のリスクを大幅に減らすのに役立ちます。 訓練された臨床専門家の手作業による介入は、特に発展途上国では時間と労力がかかります。したがって、このケーススタディの主な目的は、効率的な技術を使用して状態の重症度を検出し、失明を防止することです。私たちは、深層学習の技術を実装して、状態の分類に効果的な結果を得るために取り組んでいます。 学習目標 糖尿病性網膜症の理解:眼の状態と視力への影響について学び、早期検出の重要性を強調します。 深層学習の基礎:深層学習の基礎を探求し、糖尿病性網膜症の診断における関連性を理解します。 データの前処理と拡張:ディープラーニングモデルのトレーニングのためにデータセットを効果的に準備し、強化する方法を理解します。 モデルの選択と評価:重症度分類のためのディープラーニングモデルの選択と性能評価の方法を学びます。 実用的な展開:Flaskを使用して最適なモデルの展開と実世界での予測を実現します。 この記事はデータサイエンスブログマラソンの一環として公開されました。 ビジネスの問題 ここでは、人の状態の重症度が5つのカテゴリに分類されます。つまり、人は重症度レベルのいずれか1つで認識されます。 ビジネスの制約事項 医療分野では正確性と解釈可能性が非常に重要です。間違った予測は人々の命を奪う可能性があるため、厳格なレイテンシの心配はありませんが、結果については正確でなければなりません。 データセットの説明 データセットには、訓練された臨床専門家が各画像を糖尿病性網膜症の重症度に基づいて以下のように分類した3,662枚のラベル付き網膜画像が含まれています。 0 — 糖尿病性網膜症なし 1 —…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.