Learn more about Search Results Daniel Gu

潜在一貫性LoRAsによる4つのステップでのSDXL

潜在的一貫性モデル(LCM)は、ステーブルディフュージョン(またはSDXL)を使用してイメージを生成するために必要なステップ数を減らす方法です。オリジナルモデルを別のバージョンに蒸留し、元の25〜50ステップではなく4〜8ステップ(少ない)だけを必要とするようにします。蒸留は、新しいモデルを使用してソースモデルからの出力を再現しようとするトレーニング手順の一種です。蒸留されたモデルは、小さく設計される場合があります(これがDistilBERTや最近リリースされたDistil-Whisperの場合)または、この場合のように実行に必要なステップ数を減らします。これは通常、膨大な量のデータ、忍耐力、およびいくつかのGPUが必要な長時間かかる高コストのプロセスです。 それが今日までの現状でした! 私たちは、Stable DiffusionとSDXLを、まるでLCMプロセスを使用して蒸留されたかのように、速くする新しい方法を発表できることを喜ばしく思います!3090で7秒の代わりに約1秒、Macで10倍速くSDXLモデルを実行する、というのはどうですか?詳細は以下をご覧ください! 目次 メソッドの概要 なぜこれが重要なのか SDXL LCM LoRAsによる高速推論 品質の比較 ガイダンススケールとネガティブプロンプト 品質 vs. ベースのSDXL 他のモデルとのLCM LoRAs フルディフューザーズの統合 ベンチマーク 今日リリースされたLCM LoRAsとモデル ボーナス:通常のSDXL LoRAsとの組み合わせ LCM…

BYOL(Bootstrap Your Own Latent)— コントラスティブな自己教示学習の代替手段

『今日の論文分析では、BYOL(Bootstrap Your Own Latent)の背後にある論文に詳しく触れますこれは、対比的な自己教師あり学習技術の代替手法を提供します...』

マウス用のVRゴーグル:ネズミの世界の秘密を解き放つ

ノースウェスタン大学の研究者たちは、マウス向けの仮想現実ゴーグルを作り出すことで画期的な成果を達成しましたこの革新的な技術により、より高度な実験を行い、マウスの行動や認知機能をより深く理解することが可能になりましたこのブレークスルーは、科学研究を大幅に向上させ、将来の発見の道を開拓する可能性を秘めています

「最初のAIエージェントを開発する:Deep Q-Learning」

2. 全体像 3. 環境 初期の基礎 4. エージェントの実装 ニューラルアーキテクチャとポリシー 5. 環境への影響 仕上げ 6. 経験から学ぶ...

SetFitABSA SetFitを使用したFew-Shotアスペクトベースの感情分析

SetFitABSAは、テキスト内の特定の側面に対する感情を検出する効率的な技術です。 Aspect-Based Sentiment Analysis (ABSA)は、テキスト内の特定の側面に対する感情を検出するタスクです。例えば、「この電話は画面が素晴らしいですが、バッテリーは小さすぎます」という文では、側面の用語は「画面」と「バッテリー」であり、それぞれに対する感情極性はPositiveとNegativeです。 ABSAは、さまざまなドメインの製品やサービスの顧客フィードバックを分析して貴重な情報を抽出するために、組織によって広く使用されています。しかし、ABSAのためのラベル付けトレーニングデータは、トレーニングサンプル内で側面を手動で細かく識別する必要があるため、手間のかかる作業です。 Intel LabsとHugging Faceは、ドメイン固有のABSAモデルのfew-shotトレーニングのためのフレームワークであるSetFitABSAを紹介しています。SetFitABSAは、few-shotシナリオでLlama2やT5などの生成モデルに比べて競争力があり、さらに優れた性能を発揮します。 LLMベースの手法と比較して、SetFitABSAには次の2つのユニークな利点があります: 🗣 プロンプトが不要です: LLMを使ったfew-shot in-context学習では、結果がもろくなり、表現に敏感になり、ユーザーの専門知識に依存する手作りのプロンプトが必要です。SetFitABSAは、ラベル付けされた少数のテキスト例から直接豊かな埋め込みを生成することで、プロンプトを完全に不要とします。 🏎 高速トレーニング: SetFitABSAは、わずかなラベル付きトレーニングサンプルのみを必要とします。さらに、専門のタグ付けツールを必要としないシンプルなトレーニングデータ形式を使用します。これにより、データのラベリングプロセスが迅速かつ容易になります。 このブログ記事では、SetFitABSAの動作方法と、SetFitライブラリを使用して独自のモデルをトレーニングする方法を説明します。では、さっそく見ていきましょう! どのように機能しますか? SetFitABSAの3つのステージからなるトレーニングプロセス SetFitABSAは3つのステップで構成されています。第1ステップでは、テキストから側面候補を抽出し、第2ステップでは、側面候補を側面または非側面として分類し、最終ステップでは抽出された各側面に感情極性を関連付けます。第2ステップと第3ステップはSetFitモデルに基づいています。 トレーニング 1. 側面候補の抽出…

6つのGenAIポッドキャスト、聴くべきです

はじめに 急速に進化する 人工知能(AI)の世界において、生成AI(GenAI)の領域は魅力的でダイナミックな分野として注目されています。技術の進歩に伴い、この分野の微妙なニュアンスを理解することは重要ですが、最新情報を把握することは難しいかもしれません。GenAIは新しいコンテンツやデータを作成する能力で知られていますが、まだ比較的新しい分野ですので、最新の動向については多くの人が興味を持ちながらも情報を得ていません。この知識のギャップを埋めるために、GenAIの専門家がホストするポッドキャストは貴重な情報源となります。これらのポッドキャストは、最先端のテクノロジーの領域を探求したい学習者にとって、第一級の信頼できる情報を提供してくれます。以下に、生成AIの愛好家が聞くべきおすすめのポッドキャスト6つを紹介します。 聴くべきトップ6のGenAIポッドキャスト 1. Leading With Data by Analytics Vidhya Analytics VidhyaはデータサイエンスとAIコミュニティで有名なプラットフォームであり、彼らのポッドキャスト「Leading With Data」ではデータサイエンス、機械学習、そしてなんと言っても生成AIについてさまざまな側面を探求しています。業界のリーダーや専門家、実践者との洞察に満ちた議論を期待してください。彼らは自らの経験、課題、そしてGenAIの未来へのビジョンを共有しています。 コンテンツ形式:Leading With Dataでは業界リーダーや専門家、実践者との議論を取り上げ、GenAI、データサイエンス、機械学習などさまざまなトピックをカバーしています。 対象読者:データサイエンス愛好者、専門家、生成AIの応用に関する洞察を得たい人々。 このGenAIポッドキャストはSpotify、Apple Podcasts、Google Podcasts、YouTube、および彼らのコミュニティプラットフォームでご覧いただけます。 2. The…

「データ駆動方程式発見について」という文章です

「実験を通じて検証された分析的な表現を用いて自然を説明することは、特に物理学の基礎的な引力の法則から始まる科学の成功の象徴です...」

「AIがあなたの問題を解決できるでしょうか?」

「AIの能力を製品やサービスに組み込むことを目指す製品企業では、AIに詳しくない人々をAIの流れに乗せるという課題が常に存在します誰もが…」

システムデザインのチートシート:ElasticSearch

前の記事で検索について読んだことがあれば、アプリケーションにとって検索がいかに重要かを知っているでしょう考えてみてください:毎日使用するさまざまなウェブアプリやモバイルアプリの中で、Netflixなどがあるかもしれませんが...

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us