Learn more about Search Results Daniel

マウス用のVRゴーグル:ネズミの世界の秘密を解き放つ

ノースウェスタン大学の研究者たちは、マウス向けの仮想現実ゴーグルを作り出すことで画期的な成果を達成しましたこの革新的な技術により、より高度な実験を行い、マウスの行動や認知機能をより深く理解することが可能になりましたこのブレークスルーは、科学研究を大幅に向上させ、将来の発見の道を開拓する可能性を秘めています

「最初のAIエージェントを開発する:Deep Q-Learning」

2. 全体像 3. 環境 初期の基礎 4. エージェントの実装 ニューラルアーキテクチャとポリシー 5. 環境への影響 仕上げ 6. 経験から学ぶ...

GPT-4.5 本当か嘘か?私たちが知っていること

テックコミュニティでは、OpenAIの最新バージョンであるGPT-4.5に関する可能性のリークが話題となっています。さまざまなソーシャルメディアプラットフォームで共有されたリークは、正確な場合、印象的な機能と価格体系を明らかにし、大型言語モデルの景色を根本から変える可能性があります。 GPT-4.5の概要 GPT-4.5は、OpenAIの有名なGPT LLMのアップグレードとされており、ビジョン、ビデオ、オーディオ、言語、3Dの分野でマルチモーダルの機能を導入するようです。Twitterユーザーのdaniel_nyugenxによって開始され、Redditのスレッドで議論されたリークは、このモデルの複雑な推論とクロスモーダル理解の可能性を強調しています。ただし、これらの主張の真正性は未確認のままであり、懐疑論も漂っています。 価格の詳細 リークされた草案によると、GPT-4.5は注目を集める新しい価格体系を持っています。このモデルは、入力トークン1Kあたり0.06ドル、出力トークン1Kあたり0.18ドルの価格であると推測されています。詳細な内訳には、GPT-4.5 64KやGPT-4.5オーディオ・スピーチなどのバリアントが含まれています。これらの価格は既存のGPT-4の料金を上回り、ユーザーや開発者に関する潜在的な影響についての議論が行われています。 コミュニティの反応と懐疑論 リークのニュースが広まるにつれて、テックコミュニティは反応が分かれています。一部の人々はこれを画期的な瞬間と見なし、コンテンツ制作の可能性についてのパラダイムシフトを期待しています。しかし、インターネット上での情報の捏造が容易であることを考慮すると、リークの信憑性について疑問を呈する声もあります。元のRedditのスレッドのコメントは、価格と草案の正確性についての不確定性を反映しています。 OpenAIの対応と将来の展望 OpenAIのCEOであるSam Altmanは後にXで「リーク」は本物ではないと確認しました。OpenAIはGPT-4.5をリリースするのか、直接GPT-5に移行するのかは不明です。次のモデルは、2023年3月14日にリリースされたGPT-4の後継となるでしょう。 GPT-3が2020年6月にリリースされてから、GPT-3.5は2022年3月に登場しました。一方、OpenAIは既にGPT-5の開発に取り組んでいます。7月には、AI企業がGPT5の商標申請を行い、音声やテキストに基づくAIベースのソフトウェア、音声をテキストに変換するソフトウェア、音声および音声認識を含んでいます。 11月、OpenAIのCEOであるSam Altmanは、Financial Timesに対してGPT-5の開発に取り組んでいると語りましたが、リリースのタイムラインを確定していません。 私たちの意見 推定されるGPT-4.5のリークの後、テックコミュニティは先進の進化する言語モデルの景色を興奮しながら、潜在的な進歩を考えていました。しかし、OpenAIのCEOであるSam Altmanはリークを早速否定し、その不正確性を強調しました。この事実は、推測される機能と価格に疑問を投げかけ、慎重なアプローチが求められることを示しています。GPT-4.5の可能性は不確実ですが、GPT-5の開発が進行中であるというAltmanの確認は、OpenAIの計画に興味を持つ人々にとって興味深いものとなっています。熱心なファンは公式なアップデートを待ちながら、進化する高度な言語モデルの世界を航海する際には、検証された情報に頼る重要性を強調しています。

SetFitABSA SetFitを使用したFew-Shotアスペクトベースの感情分析

SetFitABSAは、テキスト内の特定の側面に対する感情を検出する効率的な技術です。 Aspect-Based Sentiment Analysis (ABSA)は、テキスト内の特定の側面に対する感情を検出するタスクです。例えば、「この電話は画面が素晴らしいですが、バッテリーは小さすぎます」という文では、側面の用語は「画面」と「バッテリー」であり、それぞれに対する感情極性はPositiveとNegativeです。 ABSAは、さまざまなドメインの製品やサービスの顧客フィードバックを分析して貴重な情報を抽出するために、組織によって広く使用されています。しかし、ABSAのためのラベル付けトレーニングデータは、トレーニングサンプル内で側面を手動で細かく識別する必要があるため、手間のかかる作業です。 Intel LabsとHugging Faceは、ドメイン固有のABSAモデルのfew-shotトレーニングのためのフレームワークであるSetFitABSAを紹介しています。SetFitABSAは、few-shotシナリオでLlama2やT5などの生成モデルに比べて競争力があり、さらに優れた性能を発揮します。 LLMベースの手法と比較して、SetFitABSAには次の2つのユニークな利点があります: 🗣 プロンプトが不要です: LLMを使ったfew-shot in-context学習では、結果がもろくなり、表現に敏感になり、ユーザーの専門知識に依存する手作りのプロンプトが必要です。SetFitABSAは、ラベル付けされた少数のテキスト例から直接豊かな埋め込みを生成することで、プロンプトを完全に不要とします。 🏎 高速トレーニング: SetFitABSAは、わずかなラベル付きトレーニングサンプルのみを必要とします。さらに、専門のタグ付けツールを必要としないシンプルなトレーニングデータ形式を使用します。これにより、データのラベリングプロセスが迅速かつ容易になります。 このブログ記事では、SetFitABSAの動作方法と、SetFitライブラリを使用して独自のモデルをトレーニングする方法を説明します。では、さっそく見ていきましょう! どのように機能しますか? SetFitABSAの3つのステージからなるトレーニングプロセス SetFitABSAは3つのステップで構成されています。第1ステップでは、テキストから側面候補を抽出し、第2ステップでは、側面候補を側面または非側面として分類し、最終ステップでは抽出された各側面に感情極性を関連付けます。第2ステップと第3ステップはSetFitモデルに基づいています。 トレーニング 1. 側面候補の抽出…

6つのGenAIポッドキャスト、聴くべきです

はじめに 急速に進化する 人工知能(AI)の世界において、生成AI(GenAI)の領域は魅力的でダイナミックな分野として注目されています。技術の進歩に伴い、この分野の微妙なニュアンスを理解することは重要ですが、最新情報を把握することは難しいかもしれません。GenAIは新しいコンテンツやデータを作成する能力で知られていますが、まだ比較的新しい分野ですので、最新の動向については多くの人が興味を持ちながらも情報を得ていません。この知識のギャップを埋めるために、GenAIの専門家がホストするポッドキャストは貴重な情報源となります。これらのポッドキャストは、最先端のテクノロジーの領域を探求したい学習者にとって、第一級の信頼できる情報を提供してくれます。以下に、生成AIの愛好家が聞くべきおすすめのポッドキャスト6つを紹介します。 聴くべきトップ6のGenAIポッドキャスト 1. Leading With Data by Analytics Vidhya Analytics VidhyaはデータサイエンスとAIコミュニティで有名なプラットフォームであり、彼らのポッドキャスト「Leading With Data」ではデータサイエンス、機械学習、そしてなんと言っても生成AIについてさまざまな側面を探求しています。業界のリーダーや専門家、実践者との洞察に満ちた議論を期待してください。彼らは自らの経験、課題、そしてGenAIの未来へのビジョンを共有しています。 コンテンツ形式:Leading With Dataでは業界リーダーや専門家、実践者との議論を取り上げ、GenAI、データサイエンス、機械学習などさまざまなトピックをカバーしています。 対象読者:データサイエンス愛好者、専門家、生成AIの応用に関する洞察を得たい人々。 このGenAIポッドキャストはSpotify、Apple Podcasts、Google Podcasts、YouTube、および彼らのコミュニティプラットフォームでご覧いただけます。 2. The…

「データ駆動方程式発見について」という文章です

「実験を通じて検証された分析的な表現を用いて自然を説明することは、特に物理学の基礎的な引力の法則から始まる科学の成功の象徴です...」

「AIがあなたの問題を解決できるでしょうか?」

「AIの能力を製品やサービスに組み込むことを目指す製品企業では、AIに詳しくない人々をAIの流れに乗せるという課題が常に存在します誰もが…」

システムデザインのチートシート:ElasticSearch

前の記事で検索について読んだことがあれば、アプリケーションにとって検索がいかに重要かを知っているでしょう考えてみてください:毎日使用するさまざまなウェブアプリやモバイルアプリの中で、Netflixなどがあるかもしれませんが...

「新時代のAI/MLのためのソフトウェア/ハードウェアアーキテクチャをどのように共同設計するか?」

最新の生成AI技術は、コンピュータビジョン、自然言語処理などで爆発的な成長を遂げ、画期的なモデルアーキテクチャの研究によるブレイクスルーが続々と生まれています

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us