Learn more about Search Results Cgo

「GoとMetalシェーディング言語を通じてAppleのGPUをプログラミングする」

以下では、GoとネイティブCの間でcgoを使用してインターフェースを作成するプロセス、これを使用してAppleのMetal Performance ShadersフレームワークのObjective-Cバインディングとインターフェースを作成する方法について説明します

中国のこのAI研究は、AIの幻覚を探求する:大型言語モデルにおける幻視に深く潜る

大型言語モデルは最近、自然言語処理におけるパラダイムの変化をもたらし、以前には考えられなかった言語の創造、理解、推論の進歩をもたらしました。しかし、LLMの急速な発展と共に共起する懸念すべき傾向は、信憑性があるように思える情報を誘発し、事実の裏付けがないというものです。現在の幻覚の定義は、それらが与えられたソースコンテンツに対して不合理であるかまたは不忠実であると説明しており、以前の研究と一致しています。元の素材との不一致の程度に基づいて、これらの幻覚は内在的な幻覚と外在的な幻覚のカテゴリーにさらに分けられます。 タスク固有のバリアントが存在しますが、このカテゴリはいくつかの自然言語生成の仕事で共有されています。タスク固有のモデルと比較して、LLMはその優れた適応性と優れた性能のため、特にオープンドメインの応用において、幻覚を引き起こす可能性が高いです。LLM内では、幻覚は事実の不正確さに主眼を置いたより広範かつ包括的な概念であり、その幻覚タクソノミーはLLMの進化に合わせて関連性と柔軟性を向上させるために修正する必要があります。中国の哈爾滨工业大学と Huawei の研究チームがこの研究で幻想的なタクソノミーを再分類し、LLMの応用により専門化された基盤を提供しています。 彼らは幻覚を主に2つのカテゴリに分けています:忠実度幻覚と事実性幻覚。事実性の幻覚では、作成されたコンテンツと検証された現実世界の事実との違いに重点が置かれます;これらの違いは通常、でっち上げや事実の不一致として現れます。例えば、図1に示すように、月に初めて足を踏み入れた人物に関する質問に対して、モデルは1951年にチャールズ・リンドバーグがそうしたと自信を持って回答するでしょう。しかし、1969年のアポロ11号のミッションにより、ニール・アームストロングが初めて月に足を踏み入れました。一方、「信頼性の幻想」は生成されたコンテンツがユーザーの指示や入力の文脈からの不一致や離反を表す用語です。 図1に見られるように、ニュースストーリーを説明するように求められた際にイスラエルとハマスの対立に関する出来事の日付を間違ってしまい、2023年10月を2006年10月と誤解するモデルが生成しました。彼らはまた、事実性を検証可能なソースの存在に応じて、事実の不一致と事実のでっち上げの2つのサブカテゴリに細分化しています。彼らはユーザーの視点から不一致を解消することに重点を置き、論理的な、文脈的な、指示的な不一致に分類しています。これにより、現在のLLMの使用方法により一致するようになりました。これはNLGのタスクの文脈で調査されてきましたが、幻覚の根本的な原因は最新のLLMにとって特別な困難をもたらし、さらなる研究が必要です。 図1:LLMの幻覚を自然な形で示したイラスト 彼らの徹底的な調査は、LLMにおける幻覚の特定の原因に焦点を当てており、トレーニングやデータから推論フェーズまで、幅広い関連要素を扱っています。この枠組みの中で、不十分なソースや未活用のリソース、不十分なトレーニング戦略による事前トレーニングやアライメントの幻覚、および推論中の確率的デコーディング手法や不正確な表現に起因する幻覚など、データ関連の原因が考えられます。 さらに、彼らはLLMにおける幻覚を特定するための効率的な検出技術の詳細な説明と、LLMの幻覚の度合いを評価するためのベンチマークの包括的な概要を提供しています。また、幻覚の認識源を軽減するために設計された徹底的な戦術も提供しています。彼らは、この研究がLLMの分野をさらに発展させ、LLMの幻覚に関連する潜在的な利点と困難についての洞察を提供することを期待しています。この調査により、既存のLLMの欠点に対する理解が改善され、さらなる研究とより信頼性のある強力なLLMの作成に向けた重要な方向性も提供されます。

『MakeBlobs + フィクショナルな合成データ:新しい(まあ、新しい)ユースケース』

「Open Data Science Conference(ODSC)の西部版から、最も注目されたパネルの1つは、合成データに関するトピックでしたこの記事では、合成データの方法について新たな視点から再訪します...」

テイクオーバー:AI共同パイロットがCスイートを終了

この記事で私が強調する重要なポイントは、AIが何らかの形でCスイートや他のサブレベルの企業の通常の業務フローを妨害しているということです私の意図をくどくともせずに述べるとすれば...

「時系列分析を用いた回帰モデルの頑健性向上 – 第1部」

『シンガポールは、自宅から1.5時間の場所に位置し、いつも私を魅了しますより大きな隣国に囲まれている中で、この小さな国は困難を乗り越えてきました独立時の謙虚な始まりから、今では…』

Note This translation conveys the same meaning as the original English phrase, which refers to going from a state of poverty to wealth.

大規模言語モデル(LLM)が世界中を席巻している中、ベクトル検索エンジンも同行していますベクトルデータベースは、LLMの長期記憶システムの基盤を形成しています...

キャンドル:Rustでのミニマリストな機械学習

人工知能(AI)企業のHugging Faceは最近、新しいミニマリスティックな機械学習(ML)フレームワークであるCandleをRustプログラミング言語向けに設計しましたこの革新的な...

メタAIのコンピュータビジョンにおける公平性のための2つの新しい取り組み:DINOv2のためのライセンス導入とFACETのリリースの紹介

コンピュータビジョンの絶え間ない進化の中で、公平性を確保することが急務となっています。この記事では、AI技術、特にコンピュータビジョンにおける広範な可能性について解説し、エコロジーの保護活動から画期的な科学的探求を支援するまで、さまざまなセクターで変革的な突破口となるカタリストとしての役割を果たしていることを明らかにしています。しかし、この技術の台頭に伴う潜在的なリスクについても率直に語っています。 Meta AIの研究者は、急速なイノベーションのリズムと必要とされる慎重な開発プラクティスの間で重要な均衡を取ることを強調しています。これらのプラクティスは単なる選択肢ではなく、歴史的に弱い立場にあるコミュニティにこの技術が誤って与える可能性のある損害から守るための重要な盾です。 Meta AIの研究者は、この多面的な課題に対応する包括的なロードマップを策定しています。まず、自己教師あり学習のための試練を経て鍛造された先進的なコンピュータビジョンモデルであるDINOv2を、オープンソースのApache 2.0ライセンスの下でより広範なユーザーに提供します。DINOv2は、コンピュータビジョンモデルの大幅な進歩を表すものです。セルフサプライズ学習の技術を利用して、普遍的な特徴を作り出し、高い柔軟性で画像を理解し解釈することができます。 DINOv2の能力は、従来の画像分類を超えています。セマンティックイメージセグメンテーションという多くのタスクで優れたパフォーマンスを発揮し、オブジェクトの境界を正確に識別し、意味のある領域に画像をセグメント化します。また、単眼の深度推定においても優れたパフォーマンスを発揮し、画像内のオブジェクトの空間的な奥行きを知覚することができます。この多様性により、DINOv2はコンピュータビジョンアプリケーションのパワーハウスとなります。このアクセシビリティの拡大により、開発者や研究者はDINOv2の強力な機能をさまざまなアプリケーションに活用し、コンピュータビジョンイノベーションのフロンティアをさらに押し進めることができます。 Metaのコンピュータビジョンにおける公平性への取り組みの核心は、FACET(FAirness in Computer Vision Evaluation)の導入によって明らかになります。FACETは、約50,000人を特集した驚異的なベンチマークデータセットであり、専門の人間注釈者による細心の注釈が特徴です。これらの専門家は、データセットを細心の注意を払って注釈付けし、さまざまな次元で分類しています。これには、認識されるジェンダープレゼンテーション、年齢層、認識される肌の色合いや髪型などの人口統計属性が含まれます。驚くべきことに、FACETは「バスケットボール選手」や「医師」といった職業など、人に関連するクラスを導入しています。さらに、研究目的のために69,000のマスクのラベルも含まれており、その意義が高まっています。 FACETを用いた初期の探索では、最先端のモデルが異なる人口集団間でのパフォーマンスの差異を明らかにしました。たとえば、これらのモデルは、より暗い肌色を持つ個人や巻き毛のある個人を正確に検出することに頻繁に課題を抱えており、注意深い検討が必要な潜在的なバイアスを明らかにしています。 FACETを使用したパフォーマンス評価では、最先端のモデルが人口集団間でのパフォーマンスの差異を示しています。たとえば、モデルはより暗い肌色を持つ個人を検出することに苦労し、巻き毛のある個人に対してはさらに困難を抱えることがあります。これらの差異は、コンピュータビジョンモデルにおけるバイアスの評価と軽減の必要性を強調しています。 FACETは主に研究評価のために設計されており、トレーニング目的ではありませんが、コンピュータビジョンモデルの公平性を評価するための第一級の基準として台頭する可能性があります。これにより、従来の人口統計属性を超えて人に関連するクラスを取り入れた、深い洞察に基づく公平性の評価が可能となります。 まとめると、Metaの記事は、コンピュータビジョン内の公平性問題についての警笛を鳴らし、FACETによって明らかになったパフォーマンスの差異を明るみに出しています。Metaの方法論は、DINOv2のような先進モデルへのアクセスの拡大と、先駆的なベンチマークデータセットの導入を含めた多面的なアプローチを強調しています。これにより、イノベーションの促進と倫理基準の維持、公平性の問題の緩和に対する彼らの不断の取り組みが浮き彫りになっています。それは、技術がすべての人々の福祉のために活用される公正なAIの景観を実現するための航海図を描いています。

Rとbrmsを用いた学校卒業者の結果のベイズ比較

学校を卒業した後に私たちがしたいことについては、たくさん話されます私たちは幼い頃から、大人になったら何をしたいかと聞かれ、その後13年間を予備教育で過ごします公立の…

「機械学習モデルにおける気象データの利用」

はじめに 天気は現実世界で起こる多くのことに影響を与える主要な要素です。実際、それは非常に重要なので、機械学習モデルを組み込むことでそれを取り込む予測モデルには通常恩恵をもたらします。 次のシナリオを考えてみてください: 公共交通機関がシステム内の遅延や渋滞を予測しようとする エネルギー供給業者が明日の太陽光発電量を見積もり、エネルギー取引のために使用したい イベント主催者が参加者数を予測し、安全基準を満たすために確保する必要がある 農場が来週の収穫作業をスケジュールする必要がある 上記のシナリオのどれにも天気を含めないモデルは、無意味であるか、あるいはできるだけ良くないと言えるでしょう。 驚くことに、天気予測自体に焦点を当てたオンラインリソースは多くありますが、天気データを効果的に特徴量として取得・使用する方法についてはほとんどありません。この記事はそれについて説明します。 概要 まず、モデリングに天気データを使用する際の課題、一般的に使用されるモデル、および提供者について紹介します。そして、ケーススタディを実行し、ニューヨークのタクシー乗車を予測するために提供者のデータを使用して機械学習モデルを構築します。 この記事の最後には、以下のことを学びます: モデリングにおける天気データの課題 どのような天気モデルと提供者が存在するか 時系列データのETLと特徴量構築の典型的な手順 SHAP値を使用した特徴量の重要度評価 この記事はデータサイエンスブログマラソンの一環として公開されました。 課題 測定と予測された天気 本番のMLモデルでは、(1)リアルタイムで予測を行うためのライブデータと(2)モデルをトレーニングするための大量の過去のデータの両方が必要です。 by Hadija on Unsplash…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us