Learn more about Search Results Buffer

忙しい生活を管理するためにAIツールを利用する6つの賢い方法

技術の進化によって世界がほぼ完全に駆動される時代において、ついていくのに苦労しているように感じることは簡単ですしかし、AIツールにはその負担の一部を肩代わりしてくれる可能性がありますスケジュールの管理やメールのフィルタリングを手助けしてくれる賢いテクノロジーによって混沌を切り抜けることを想像してみてください忙しい生活を管理するためにAIツールを利用する6つの賢い方法」

「RetinaNetとKerasCVを使用した物体検出」

画像セグメンテーションをベースにしたミニプロジェクトを終えた後(こちらをご覧ください)、コンピュータビジョンの一環として、別の一般的なタスクに取り掛かる準備ができました:オブジェクト検出ですオブジェクト検出とは...

「GoとMetalシェーディング言語を通じてAppleのGPUをプログラミングする」

以下では、GoとネイティブCの間でcgoを使用してインターフェースを作成するプロセス、これを使用してAppleのMetal Performance ShadersフレームワークのObjective-Cバインディングとインターフェースを作成する方法について説明します

「Streamlitを使用してナンバープレート認識アプリを作成する」

この記事は、事前学習済みのモデルを使用して可変行のナンバープレートからテキストを抽出する解決策を簡単に説明し、Streamlitを使用してウェブアプリを構築する手順を段階的に説明します

‘製品およびエンジニアリングリーダーのための実践的なGenAI’

「もし普段から運転することがあるなら、自動車のフードには気にすることなく綿が詰まっているかもしれませんしかし、もしもあなたがより良い車を作る責任を持つ設計や製造の一環であるならば…」

「コスト効率の高い高性能 AI 推論用の Amazon EC2 DL2q インスタンスが一般提供開始されました」

Qualcomm AIのA.K Royさんによるゲスト記事ですAmazon Elastic Compute Cloud(Amazon EC2)DL2qインスタンスは、Qualcomm AI 100 Standardアクセラレータによってパワーアップされ、クラウド上で効率的に深層学習(DL)タスクを展開するために使用することができますDLタスクのパフォーマンスや精度を開発し、検証するためにも利用できます

「JAXにおけるディープ強化学習の優しい入門」

最近の強化学習(RL)の進歩、例えばWaymoの自律タクシーやDeepMindの人間を超えたチェスプレイヤーエージェントなどは、ニューラルなどのディープラーニングコンポーネントを持つ古典的なRLを補完しています...

LangChain チートシート — すべての秘密を1ページにまとめました

作成されたワンページは、LangChainの基本をまとめたものですこの記事では、コードのセクションを進めて行き、LangChainで成功するために必要なスターターパッケージについて説明しますLangChainにおけるモデルは…

「Amazon SageMaker JumpStartで大規模な言語モデルの応答をストリーム配信する」

「Amazon SageMaker JumpStartでは、言語モデル(LLM)の推論応答をストリーミングで提供できるようになりましたトークンのストリーミングでは、LLMの応答生成が完了するのを待つ必要なく、応答生成が行われるたびにモデルの応答結果を確認できます」[...]

「AWS上でのPySparkの展開におけるベストプラクティスは何ですか?」

イントロダクション ビッグデータと高度な分析において、PySparkは大規模なデータセットの処理と分散データの分析における強力なツールとして登場しています。AWSクラウド上でPySparkを展開することは、データ密集型のタスクに対してスケーラビリティと柔軟性を提供する画期的なものであり、Dockerコンテナと組み合わせることでシームレスで効率的なソリューションとなります。 しかし、クラウドインフラ上でPySparkを展開することは複雑で困難な場合があります。分散コンピューティング環境の設定やSparkクラスタの構成、リソースの管理などの詳細は、多くの人々がその完全な潜在能力を引き出すことから遠ざけてしまいます。 学習目標 PySpark、AWS、およびDockerの基本的なコンセプトを学び、クラウド上でPySparkクラスタを展開するための堅固な基盤を確立します。 AWSを使用してPySparkをDockerで設定する包括的なステップバイステップガイドに従い、AWSの設定、Dockerイメージの準備、およびSparkクラスタの管理を行います。 モニタリング、スケーリング、およびベストプラクティスへの適合により、AWS上でPySparkのパフォーマンスを最適化する戦略を発見し、データ処理ワークフローの最大限の活用を実現します。 この記事はデータサイエンスブログマラソンの一部として公開されました。 前提条件 PySparkをAWS上でDockerを使用して展開するための旅に出る前に、次の前提条件を満たしていることを確認してください: 🚀 ローカルPySparkインストール: PySparkアプリケーションを開発およびテストするためには、ローカルマシンにPySparkをインストールすることが重要です。オペレーティングシステムの公式ドキュメントに従ってPySparkをインストールします。このローカルインストールは開発環境として機能し、AWSに展開する前にPySparkコードの記述とテストを行うことができます。 🌐 AWSアカウント: PySparkの展開に必要なクラウドインフラストラクチャとサービスにアクセスするためには、有効なAWS(Amazon Web Services)アカウントが必要です。AWSアカウントを持っていない場合は、AWSのウェブサイトでサインアップすることができます。新規ユーザにはリソースが制限された無料利用枠が提供されていますが、支払い情報の提供が必要となります。 🐳 Dockerのインストール: Dockerはこの展開プロセスで重要なコンポーネントです。Ubuntuオペレーティングシステム向けのインストール手順に従って、ローカルマシンにDockerをインストールします。Dockerコンテナを使用して、PySparkアプリケーションを一貫した形でカプセル化して展開することができます。 Windows 以下の Windows向けDocker…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us