Learn more about Search Results AWS Identity and Access Management
- You may be interested
- 「プラットプス:データセットのキュレー...
- あなたの特徴は重要ですか?それが良いと...
- カールスルーエ工科大学(KIT)の研究者た...
- 「このAIニュースレターが必要なすべて #59」
- 大型言語モデルへの優しい導入
- 2023年に知っておくべきトップ15のビッグ...
- ChatGPT vs. BARD’の比較
- 「ロボティクススタートアップの市場特定...
- 『Amazon SageMaker を使用して、Talent.c...
- 「PythonとSimpleITKを使用した3D医療画像...
- 「GPT-4の隠れた回帰の時間経過の定量化」
- 「BigQueryの新しい生成AI機能」
- GoogleのプロジェクトOpen Se Curaをご紹...
- XGBoost 最終ガイド(パート1)
- OpenAIがBaby Llamaを発表 – 低電力...
「DynamoDB vs Cassandra:あなたのビジネスに適したデータベースを選ぶ」
イントロダクション デジタル時代において、データベースはどんなビジネスの基盤です。データベースはビジネスの運営や意思決定に必要な膨大なデータを格納、整理、管理する役割を果たします。適切なデータベースを選ぶことは、ビジネスの効率性、拡張性、収益性に大きな影響を与えることがあります。この記事では、DynamoDBとCassandraという2つの人気のあるデータベースについて、総合的な比較を提供し、より良い判断を支援します。 DynamoDBとは何ですか? Amazon Web Services(AWS)は2012年にDynamoDBを導入し、完全に管理されたNoSQLデータベースサービスとして提供しました。DynamoDBは高速かつ予測可能なパフォーマンス、シームレスなスケーラビリティを提供することで広く採用されています。低遅延のデータアクセス、自動スケーリング、組み込みのセキュリティなど、DynamoDBはさまざまな業界で人気を集めています。ゲーム、広告技術、IoTなど、リアルタイムのデータ処理が求められる業界で特に使用されます。 Cassandraとは何ですか? Facebookが2008年に開発したCassandraは、後にApacheでオープンソースとして公開されました。Cassandraは分散型のNoSQLデータベースであり、多数のコモディティサーバー上で大量のデータを処理し、単一障害点を持たない高い可用性を実現するよう設計されています。Cassandraの主な特徴には、直線的なスケーラビリティ、強力な障害耐性、柔軟なデータモデルなどがあります。Cassandraは金融、小売、通信などの分野で使用され、高い可用性と障害耐性が求められます。 DynamoDBとCassandraの詳細な比較 DynamoDBとCassandraを比較する際には、いくつかの要素が重要になります。 側面 DynamoDB Cassandra データモデル – キーバリューストア、オプションのセカンダリインデックスをサポート– 柔軟なスキーマをサポート– JSONのようなドキュメントサポート – ワイドカラムストア、テーブル、行、列をサポート– 複雑なデータ型をサポート– クエリにはCQL(Cassandra Query Language)を使用…
「初めに、AWS上でMONAI Deployを使用して医療画像AI推論パイプラインを構築しましょう!」
この記事では、MONAI Deploy App SDKで構築されたアプリケーションに再利用可能なMAPコネクタを作成する方法を紹介しますこれにより、クラウドネイティブなDICOMストアから医療画像AIのワークロードへの画像データの取得を統合し、高速化することができますMONAI Deploy SDKは、病院の運用をサポートするために使用することができますさらに、MAP AIアプリケーションをSageMakerでスケールアップするための2つのホスティングオプションもデモンストレーションします
「AWS上でのPySparkの展開におけるベストプラクティスは何ですか?」
イントロダクション ビッグデータと高度な分析において、PySparkは大規模なデータセットの処理と分散データの分析における強力なツールとして登場しています。AWSクラウド上でPySparkを展開することは、データ密集型のタスクに対してスケーラビリティと柔軟性を提供する画期的なものであり、Dockerコンテナと組み合わせることでシームレスで効率的なソリューションとなります。 しかし、クラウドインフラ上でPySparkを展開することは複雑で困難な場合があります。分散コンピューティング環境の設定やSparkクラスタの構成、リソースの管理などの詳細は、多くの人々がその完全な潜在能力を引き出すことから遠ざけてしまいます。 学習目標 PySpark、AWS、およびDockerの基本的なコンセプトを学び、クラウド上でPySparkクラスタを展開するための堅固な基盤を確立します。 AWSを使用してPySparkをDockerで設定する包括的なステップバイステップガイドに従い、AWSの設定、Dockerイメージの準備、およびSparkクラスタの管理を行います。 モニタリング、スケーリング、およびベストプラクティスへの適合により、AWS上でPySparkのパフォーマンスを最適化する戦略を発見し、データ処理ワークフローの最大限の活用を実現します。 この記事はデータサイエンスブログマラソンの一部として公開されました。 前提条件 PySparkをAWS上でDockerを使用して展開するための旅に出る前に、次の前提条件を満たしていることを確認してください: 🚀 ローカルPySparkインストール: PySparkアプリケーションを開発およびテストするためには、ローカルマシンにPySparkをインストールすることが重要です。オペレーティングシステムの公式ドキュメントに従ってPySparkをインストールします。このローカルインストールは開発環境として機能し、AWSに展開する前にPySparkコードの記述とテストを行うことができます。 🌐 AWSアカウント: PySparkの展開に必要なクラウドインフラストラクチャとサービスにアクセスするためには、有効なAWS(Amazon Web Services)アカウントが必要です。AWSアカウントを持っていない場合は、AWSのウェブサイトでサインアップすることができます。新規ユーザにはリソースが制限された無料利用枠が提供されていますが、支払い情報の提供が必要となります。 🐳 Dockerのインストール: Dockerはこの展開プロセスで重要なコンポーネントです。Ubuntuオペレーティングシステム向けのインストール手順に従って、ローカルマシンにDockerをインストールします。Dockerコンテナを使用して、PySparkアプリケーションを一貫した形でカプセル化して展開することができます。 Windows 以下の Windows向けDocker…
「Amazon Bedrockへのプライベートアクセスを設定するために、AWS PrivateLinkを使用してください」
「Amazon Bedrockは、AWSが提供する完全管理型サービスであり、開発者にファウンデーションモデル(FM)へのアクセスとそれらを特定のアプリケーションにカスタマイズするためのツールを提供しますインフラストラクチャの管理をせずに、APIを通じてFMを使用して生成AIアプリケーションを構築およびスケールすることができますAmazonや主要な[…]から様々なFMを選択することができます」
「AWS上でクラウドネイティブなフェデレーテッドラーニングアーキテクチャを再発明する」
このブログでは、AWS上でクラウドネイティブなFLアーキテクチャを構築する方法を学びますAWSのインフラストラクチャとコード(IaC)ツールを使用することで、簡単にFLアーキテクチャを展開することができますまた、クラウドネイティブアーキテクチャは、確かなセキュリティと運用の優れたAWSサービスのさまざまな利点を最大限に活用し、FLの開発を簡素化します
「VirtuSwapがAmazon SageMaker StudioのカスタムコンテナとAWS GPUインスタンスを使用して、Pandasベースの取引シミュレーションを加速する方法」
「この投稿は、VirtuSwapのディマ・ザドロジニーとフアド・ババエフとの共同執筆ですVirtuSwapは、ブロックチェーン上の資産の非中央集権型取引のための革新的なテクノロジーを開発しているスタートアップ企業ですVirtuSwapのテクノロジーは、直接のペアが存在しない資産のより効率的な取引を提供します直接のペアの不在により、コストのかかる間接的な取引が生じます...」
AWSにおける生成AIとマルチモーダルエージェント:金融市場における新たな価値を開拓するための鍵
マルチモーダルデータは、市場、経済、顧客、ニュースおよびソーシャルメディア、リスクデータを含む、金融業界の貴重な要素です金融機関はこのデータを生成し、収集し、利用して、金融業務の洞察を得たり、より良い意思決定を行ったり、パフォーマンスを向上させたりしますしかし、マルチモーダルデータには複雑さと不足に起因する課題があります
「Amazon SageMaker Data WranglerでAWS Lake Formationを使用して細粒度のデータアクセス制御を適用する」
「SageMaker Data Wranglerは、Amazon EMRと組み合わせてLake Formationを利用できるようになり、この細かいデータアクセス制限を提供することをお知らせできることを嬉しく思います」
創造力を解き放つ:ジェネレーティブAIとAmazon SageMakerがビジネスを支援し、AWSを活用したマーケティングキャンペーンの広告クリエイティブを生み出します
広告代理店は、生成AIとテキストから画像を生成する基礎モデルを使用して、革新的な広告クリエイティブとコンテンツを作成することができますこの記事では、Amazon SageMakerを使用して既存のベース画像から新しい画像を生成する方法を示しますAmazon SageMakerは、スケーラブルなMLモデルを構築、トレーニング、展開するための完全な管理サービスですこのソリューションを使用することで、大規模なビジネスでも[…]
AWS CDKを介してAmazon SageMakerロールマネージャーを使用して、カスタム権限を数分で定義します
機械学習(ML)の管理者は、MLワークロードのセキュリティと完全性を維持する上で重要な役割を果たしています彼らの主な焦点は、ユーザーが最高のセキュリティで操作し、最小特権の原則に従うことを確認することですただし、異なるユーザーペルソナの多様なニーズに対応し、適切な許可ポリシーを作成することは、時にアジリティを妨げることがあります[…]
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.