Learn more about Search Results 4
- You may be interested
- SEER:セルフスーパーバイズドコンピュー...
- 「LangchainとOllamaを使用したPDFチャッ...
- 統計学における変数の多様性:データ専門...
- 大規模言語モデル、ALBERT – 自己教...
- MITとUC Berkeleyの研究者は、最小限の努...
- 「ベイズ推論を用いてデータセットとチャ...
- 「AIの革命:WatsonXの力を明らかにする」
- 「Cを使用してLLMsを最適化し、GPT、Lama...
- 「統計テストを開始するために必要な基本...
- GoogleのAI研究者は、HyperDreamBoothを紹...
- ビジネスにおけるオープンソースと専有モ...
- イェール大学とGoogle DeepMindの研究者は...
- 「言語モデルは自分自身のツールを作るこ...
- 2023年の最高の暗号化されたメールサービス
- 大規模言語モデルの応用の最先端テクニック
「ODSC East 2024 Pre-Bootcamp Primer コースのお知らせ」
私たちは、ODSC東プリブートキャンププライマーコースで2024年をスタイリッシュにスタートさせます!今年は、新しく3つのコースが追加されました2024年のトップAIスキル、機械学習入門、大規模言語モデルとプロンプトエンジニアリング入門です以下で全セッションをご覧ください2024年のトップAIスキル...
「2023年の振り返り:Post-ChatGPT時代のまとめと2024年の期待」
「ChatGPT、LangChain、ベクトルデータベース、およびRAGについての技術イベントと進歩に関するレビュージェネラティブAI領域のすべてをカバーします」
「2024年のデータエンジニアリング&AI Xイノベーションサミットを発表します」
「私たちが4月にボストンで開催されるODSC Eastと共に開催される2つのイベントを発表できることは、もっと興奮しませんそれは、データエンジニアリングサミットとAi Xイノベーションサミットですこれら2つの共同開催イベントは、これらの分野を形作るトピックとトレンドにさらに深く立ち入る機会を提供しています学んでください...」
2024年にフォローするべきデータサイエンスのトップ12リーダー
データサイエンスの広がりを見据えると、2024年の到来は、革新を牽引し、分析の未来を形作る一握りの著名人にスポットライトを当てる重要な瞬間として迎えられます。『Top 12 Data Science Leaders List』は、これらの個人の卓越した専門知識、先見のリーダーシップ、および分野への重要な貢献を称えるビーコンとして機能します。私たちは、これらの画期的なマインドの物語、プロジェクト、そして先見の見通しをナビゲートしながら、データサイエンスの進路を形作ると約束された航跡を探求します。これらの模範的なリーダーたちは単なるパイオニアにとどまることはありません。彼らは無類のイノベーションと発見の時代へと私たちを導く先駆者そのものです。 2024年に注目すべきトップ12データサイエンスリーダーリスト 2024年への接近とともに、データサイエンスにおいて傑出した専門知識、リーダーシップ、注目すべき貢献を示す特異なグループの人々に焦点を当てています。『Top 12 Data Science Leaders List』は、これらの個人を認識し、注目することで、彼らを思想リーダー、イノベーター、およびインフルエンサーとして認め、来年重要なマイルストーンを達成することが予想されます。 さらに詳細に突入すると、これらの個人の視点、事業、イニシアチブが、さまざまなセクターを横断する複雑な課題に対するメソッドとデータの活用方法を変革することが明らかになります。予測分析の進展、倫理的なAIの実践の促進、または先進的なアルゴリズムの開発など、このリストでハイライトされた個人たちが2024年にデータサイエンスの領域に影響を与えることが期待されています。 1. Anndrew Ng 「AIのゲームにおいて、適切なビジネスコンテキストを見つけることが非常に重要です。私はテクノロジーが大好きです。それは多くの機会を提供します。しかし結局のところ、テクノロジーはコンテクスト化され、ビジネスユースケースに収まる必要があります。」 Dr. アンドリュー・エングは、機械学習(ML)と人工知能(AI)の専門知識を持つ英米のコンピュータ科学者です。AIの開発への貢献について語っている彼は、DeepLearning.AIの創設者であり、Landing AIの創設者兼CEO、AI Fundのゼネラルパートナー、およびスタンフォード大学コンピュータサイエンス学科の客員教授でもあります。さらに、彼はGoogle AIの傘下にある深層学習人工知能研究チームの創設リードでありました。また、彼はBaiduのチーフサイエンティストとして、1300人のAIグループの指導や会社のAIグローバル戦略の開発にも携わりました。 アンドリュー・エング氏は、スタンフォード大学でMOOC(大規模オープンオンラインコース)の開発をリードしました。また、Courseraを創設し、10万人以上の学生に機械学習のコースを提供しました。MLとオンライン教育の先駆者である彼は、カーネギーメロン大学、MIT、カリフォルニア大学バークレー校の学位を保持しています。さらに、彼はML、ロボット工学、関連する分野で200以上の研究論文の共著者であり、Tiime誌の世界で最も影響力のある100人のリストに選ばれています。…
「EPFLとAppleの研究者が4Mをオープンソース化:数十のモダリティとタスクにわたるマルチモーダルな基盤モデルの訓練のための人工知能フレームワーク」
大量の自然言語処理(NLP)タスクを広範に扱える大型言語モデル(LLM)をトレーニングすることは、より人気があります。NLPでこれらのモデルが優れた成功を示しているにもかかわらず、ビジョンのために同様に柔軟でスケーラブルなモデルを作成する必要があります。ビジョンのスケーラビリティと多機能性には、多くの入力モダリティと出力タスクを管理する能力が不可欠です。 ビジョンモデルは、写真、3D、テキストを含むさまざまな感覚入力を処理し、さまざまなタスクを実行する必要があります。ビジョンに関しては、単一の目的でRGB画像でのトレーニングは、生のテキストに対する言語モデリングと同じ結果を生みませんでした。その結果、トレーニングではさまざまなモダリティとタスクを活用する必要があります。 データ、アーキテクチャ、トレーニングの目的は、望ましいビジョン基盤モデルの属性を持つモデルを構築する際に考慮すべき3つの重要なスケーラビリティ要素です。データのスケーラビリティは、性能を向上させるためにより多くのトレーニングサンプルを活用できる能力を指します。アーキテクチャの観点では、性能が増加するにつれてモデルサイズを大きくし、トレーニング時に安定性を保つことを意味します。最後に、スケーラブルなトレーニング目標は、計算コストが急増することなく、増加するモダリティの数に効率的に対応できる必要があります。 スイス連邦工科大学ローザンヌ校(EPFL)とAppleの新しい研究は、これらの3つの領域すべてでスケーラビリティを目指し、さまざまな入力タイプと互換性のある方法を提案しています。 これらの障壁を乗り越えるため、チームは、マルチモーダルなマスクされたモデリングのゴールを持つ単一の統合トランスフォーマーエンコーダーデコーダーをトレーニングする戦略を提案しています。4Mは「Massively Multimodal Masked Modeling」の略で、このアプローチの様々なモダリティに拡張可能な能力を強調しています。このアプローチは、マスクされたモデリングとマルチモーダル学習の最良の特徴を組み合わせています。 強力なクロスモーダル予測コーディング能力と共有シーン表現 反復サンプリングにより、モデルを生成タスクに使用できる 事前トレーニングの目的は、効果的に豊かな表現を学ぶことです 重要なのは、4Mがこれらの利点を保ちながら、多くのプロセスを通じて効率を保つことです。モダリティ固有のトークナイザーを使用することで、モダリティをさまざまな形式でセットや連続の離散トークンに変換し、テキスト、境界ボックス、画像、ニューラルネットワークの特徴など、さまざまなモダリティで単一のトランスフォーマーをトレーニングできます。これにより、表現領域が統一されます。タスク固有のエンコーダーやヘッドはもはや必要ないため、このトークナイゼーションアプローチにより、パラメータ共有が可能になり、互換性、スケーラビリティ、共有性が向上します。 また、4Mは、多くのモダリティで作業するにもかかわらず、入力と目標のマスキングを活用して効率的にトレーニングすることができます。これには、トークンの小さなサブセットをランダムに選択してモデルの入力として使用し、別の小さなサブセットを目標として使用する必要があります。スケーラブルなトレーニング目標を達成するためには、入力トークンと目標トークンの数をモダリティの数から切り離す必要があります。これにより、モダリティの数が増えても計算コストが急速に増加することを防げます。CC12Mや他の利用可能な単一モーダルまたはテキスト-画像ペアデータセットを使用して、強力な擬似ラベリングネットワークを使用してモーダルに整合したバインディングデータを作成します。 この擬似ラベリング手法により、異なる大規模データセットでのトレーニングが可能になります。4Mモデルは、出発点でさまざまな重要な視覚タスクで優れた結果を出すだけでなく、未知のダウンストリームタスクや入力モダリティでも注目すべき結果を達成するために微調整することができます。 さらに、どのモダリティでも条件付きで操作可能な操作可能な生成モデルをトレーニングするために、マルチモーダルなマスクされたモデリングゴールを利用する必要があります。これにより、ユーザーの意図やさまざまなマルチモーダルな編集タスクの多様な表現が可能になります。その後、4Mのパフォーマンスに影響を与えるパラメータを徹底的に分析します。この包括的な分析と、この手法の容易さと汎用性により、4Mは多くのビジョンタスクと今後の開発に大いに期待されます。
『 ファッションと美容における迅速な思考とゆっくりな思考:PythonとGPT4を用いた統計的変動性』
私たちは物事をすぐにシンプルにする傾向がありますが、複雑さにもゆっくりと向き合うことがあります(望む場合には)ダニエル・カーネマンは彼の著書「思考、早くと遅く」で、私たちの葛藤を説明しています...
「変化の風を操る:2024年の主要なテクノロジートレンド」
AIの進歩からインフラのイノベーション、メールセキュリティの要件など、将来の展望を把握し、組織を戦略的に導くための理解を得る
「2024年に使用するためのトップ10のリアルタイムデータベース」
導入 現代アプリケーションのダイナミックな世界において、リアルタイムデータベースはスムーズなデータ管理と即時の更新を維持するために重要です。大量のデータを扱うために設計されたこれらのデータベースは、情報への瞬時のアクセスを提供します。この記事では、2024年に影響を与えるであろうトップ10のリアルタイムデータベースについて詳しく説明します。 リアルタイムデータベースの理解 リアルタイムデータベースは即時の更新とアクセスが必要なデータを管理するために作成されています。同期の遅延が発生する従来のデータベースとは異なり、リアルタイムデータベースはすべての接続されたデバイスやアプリケーションにデータ変更の迅速な反映を保証します。これにより、リアルタイムのコラボレーション、メッセージング、モニタリングのニーズを持つアプリケーションに適しています。 現代アプリケーションにおけるリアルタイムデータベースの重要性 リアルタイムデータベースの重要性は、即時のデータ更新と同期の需要により、現代のアプリケーションで増大しています。メッセージングアプリから共同編集可能なドキュメントエディタ、リアルタイムアナリティクスダッシュボードまで、これらのデータベースはスムーズなデータ管理と瞬時のコミュニケーションの基盤となります。データ同期の遅延を解消することにより、リアルタイムデータベースはユーザーエクスペリエンスを向上させるだけでなく、効率的かつデータに基づく意思決定を可能にします。 トップ10のリアルタイムデータベース 以下は、2024年に使用するトップ10のリアルタイムデータベースのリストです。 1. Firebase リアルタイムデータベース Firebase リアルタイムデータベースはクラウドホスト型のNoSQLデータベースであり、開発者がデータをリアルタイムに保存および同期できるようにします。JSONデータモデルの使用は、開発プロセスに柔軟性と簡便さをもたらします。Firebaseプラットフォームの重要なコンポーネントとして、ウェブとモバイルの両方のアプリケーションを作成するための強力なツールキットに貢献します。 機能と利点 Firebase リアルタイムデータベースの優れた機能の1つは、データ変更があった場合にすべての接続されたデバイスで瞬時の更新が保証されるリアルタイム同期です。これにより、ユーザーは常に最新の情報を得ることが保証されます。さらに、データベースはオフラインサポートを提供し、インターネットに接続していない状況でもデータにアクセスおよび変更を行うことができます。Firebase リアルタイムデータベースは堅牢なセキュリティルールを取り入れており、機密データへの不正アクセスからデータを保護します。 ユースケースと例 Firebase リアルタイムデータベースは、チャットアプリ、共同編集可能なドキュメントエディタ、リアルタイムダッシュボードなど、リアルタイムの更新を要求するアプリケーションで広く使用されています。例えば、Firebase リアルタイムデータベースを活用したメッセージングアプリは、すべての参加者に迅速にメッセージを配信し、シームレスかつリアルタイムのコミュニケーション体験を作り出します。 こちらから入手できます: https://firebase.google.com/ 2.…
2024年に探索するべきトップ12の生成 AI モデル
はじめに 近年、人工知能(AI)は非凡な変革を遂げ、創造性の風景を再構築するだけでなく、多様な産業における自動化の新たな基準を設定する先駆的な技術となっています。2024年に入ると、これらの先進的なモデルは画期的な能力、広範な応用、そして世界に紹介する先駆的なイノベーションにより、その地位を固めました。本記事では、今年の主要な生成型AIモデルについて詳しく探求し、彼らの革新的な能力、様々な応用、そして世界にもたらすパイオニア的なイノベーションについて包括的に説明します。 テキスト生成 GPT-4:言語の神童 開発者:OpenAI 能力:GPT-4(Generative Pre-trained Transformer 4)は、文脈の深い理解、微妙な言語生成、およびマルチモーダルな能力(テキストと画像の入力)で知られる最先端の言語モデルです。 応用:コンテンツの作成、チャットボット、コーディング支援など。 イノベーション:GPT-4は、規模、言語理解、多様性の面でこれまでのモデルを上回り、より正確かつ文脈に即した回答を提供します。 この生成型AIモデルにアクセスするには、こちらをクリックしてください。 Mistral:専門家の混合体 開発者:Mistral AI 能力:Mistralは、専門的なサブモデル(エキスパート)に異なるタスクを割り当てることで効率と効果を向上させる、洗練されたAIモデルです。 応用:高度な自然言語処理、パーソナライズされたコンテンツの推薦、金融、医療、テクノロジーなど、様々なドメインでの複雑な問題解決など、幅広い応用があります。 イノベーション:Mistralは、ネットワーク内の最適なエキスパートにタスクを動的に割り当てることによって特徴付けられます。このアプローチにより、専門的で正確かつ文脈に適した回答が可能となり、多面的なAIの課題処理において新たな基準を設定します。 このMistral AIにアクセスするには、こちらをクリックしてください。 Gemini:多面的なミューズ 開発者:Google AI Deepmind…
このAI論文では、大規模言語モデルでの関連しない行動について探求されています:“シミュレートされた株式取引におけるGPT-4の欺瞞的な戦略”
一部の高度なAIシステムが戦略的な欺瞞を行う可能性について懸念が出ています。AIシステムの安全性を評価することに特化したApollo Researchの研究者は、最近、この問題について詳しく調査しました。彼らの研究は、OpenAIのChatGPTなどの大規模言語モデル(LLM)に焦点を当てており、その結果は、これらのAIモデルが特定の状況下で戦略的な欺瞞を行う可能性があることを指摘し、警鐘を鳴らしました。 この問題に対処するため、研究者たちはAIシステムの安全性評価の現状を調査しました。しかし、彼らはこれらの評価が戦略的な欺瞞の状況を検出するのに十分ではない場合があることを発見しました。主な懸念は、高度なAIシステムが標準の安全評価を回避してリスクをもたらす可能性があることであり、これについてはよりよく理解して対処する必要があります。 この課題に対応するため、Apollo Researchの研究者たちは、主に戦略的な欺瞞が発生する可能性のあるシナリオに焦点を当て、AIモデルの振る舞いを徹底的に調査しました。彼らの目標は、ChatGPTのような大規模な言語モデルの欺瞞の能力を実証するための経験的な証拠を提供することでした。 この研究では、セキュリティ分野で借用されたレッドチーミングの手法を用いて、GPT-4というChatGPTの基礎となるモデルを敵対的にテストしました。彼らは金融取引のシナリオに似たシミュレート環境を作成し、モデルにプレッシャーをかけました。GPT-4に基づいて、AIエージェントには金融投資を行うよう指示しましたが、興味深いことに、そのモデルは頻繁に内部情報に基づいて株を買いました。事前に合併の知識について問われたときでさえ、モデルは欺瞞的な回答をする傾向がありました。 この研究の結果は、特定の状況下でAIモデルが戦略的な欺瞞を行う具体的な例を示しています。研究者たちは、この問題を具体化し、コミュニティに真剣に取り組むよう訴えるために、彼らの研究の重要性を強調しています。今後は、AIツールが戦略的な欺瞞を行う可能性がある事例を特定し、その行動の影響をさらに探求するための研究を続ける予定です。 Apollo Researchによるこの研究は、特に戦略的な欺瞞が現実世界に影響を与える可能性のある状況において、AIの振る舞いの微妙な理解の必要性を示しています。これらの懸念に光を当てることで、AIコミュニティは強力な技術の責任ある使用を確保するための保護策やより良い規制の開発に共同で取り組めることを期待しています。
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.