Learn more about Search Results 3D表現

ユニ3D:スケールで統一された3D表現を探求する

テキストやビジュアルの表現の拡大は、最近の研究の主要な焦点となっています最近行われた開発と研究により、言語学習とビジョンにおいて多くの革命が生まれましたしかし、テキストやビジュアルの表現の拡大人気にもかかわらず、3Dシーンやオブジェクトの表現の拡大にはまだ課題があります

ルーシッドドリーマー:インターバルスコアマッチングを介した高品位のテキストから3D生成

最近のテキストから3DジェネレーティブAIフレームワークの進歩は、生成モデルにおける重要な節目を示していますこれらは、数多くの現実世界のシナリオで3Dアセットを作成する新たな可能性を開拓していますデジタル3Dアセットは現在、私たちのデジタル存在において不可欠な場所を占めており、複雑な環境やオブジェクトとの包括的な視覚化や対話を可能にしています

このAI論文は、コントロール可能なマルチビュー画像生成および3Dコンテンツ作成を革新するニューラルネットワークアーキテクチャー、MVControlを紹介しています

最近、2D画像制作の驚くべき進展がありました。テキストの入力プロンプトにより、高精細なグラフィックスを簡単に生成することができます。テキストから画像の生成に成功することは稀であり、3Dトレーニングデータが必要なため、テキストから3Dへの移行は難しいです。拡散モデルと微分可能な3D表現の良い性質により、最近のスコア蒸留最適化(SDS)ベースの手法では、事前学習済みの大規模テキストから画像を生成するモデルから3D知識を抽出し、大量の3Dデータで完全に学習する代わりに、印象的な結果を達成しています。DreamFusionは、3Dアセットの作成に新たなアプローチを導入した模範的な研究です。 過去1年間で、2Dから3Dへの蒸留パラダイムに基づいて方法論が急速に進化してきました。複数の最適化段階を適用することで、生成品質を改善するための多くの研究が行われており、3D表現の前に拡散を最適化したり、スコア蒸留アルゴリズムをさらに精密化したり、パイプライン全体の詳細を向上させたりしています。これらの手法は細かいテクスチャを生成できますが、2Dの拡散先行は依存していないため、生成された3Dコンテンツの視点の一貫性を確保することは困難です。そのため、複数のビュー情報を事前学習済みの拡散モデルに強制的に組み込むための試みがいくつか行われています。 ベースモデルは制御ネットワークと統合され、制御されたテキストからマルチビュー画像の生成が可能になります。同様に、研究チームは制御ネットワークのみを訓練し、MVDreamの重みはすべて凍結されています。研究チームは実験的に、相対姿勢条件が条件画像に関してテキストからマルチビューの生成を制御するためにより良い結果をもたらすことを発見しました。これに対して、MVDreamが絶対座標系で記述されたカメラの姿勢で訓練されている場合でも、事前学習済みのMVDreamネットワークの記述とは異なります。さらに、視点の一貫性は、シングルイメージの作成に対応する条件付けメカニズムを持つ2D ControlNetの制御ネットワークをベースモデルとの相互作用に直接採用することで容易に達成できます。 これらの問題に対処するために、浙江大学、西湖大学、同济大学の研究チームは、制御ネットワークを基にした独自の条件付けテクニックを作成し、制御されたテキストからマルチビューの生成を提供するために十分に成功したControlNetアーキテクチャを提案しました。幅広い2DデータセットLAIONと3DデータセットObjaverseの一部を共同で使用してMVControlを訓練しました。この研究では、エッジマップを条件として使用することを調査しましたが、彼らのネットワークは深度マップ、スケッチ画像など、さまざまな種類の入力状況を活用する能力に制約はありません。訓練が終了すると、研究チームはMVControlを使用して制御されたテキストから3Dアセットの生成に3D先行を提供することができます。具体的には、MVControlネットワークと事前学習済みのStable-Diffusionモデルに基づくハイブリッド拡散先行が使用されます。細かいステップでは、ベースモデルから十分なジオメトリを得た段階でのテクスチャの最適化のみが行われます。包括的なテストにより、提案された手法が入力条件画像と書かれた説明を使用して、高精度で細かい制御が可能なマルチビュー画像と3Dコンテンツを生成できることが示されています。 まとめると、以下が彼らの主な貢献です。 ・ネットワークが訓練された後、SDS最適化を介した制御されたテキストから3Dコンテンツ合成にハイブリッド拡散の一部として使用できます。 ・独自のネットワーク設計を提案し、細かい制御が可能なテキストからマルチビュー画像の生成を実現します。 • 彼らのアプローチは、入力条件画像とテキストのプロンプトによって細かく制御されることができる高精度なマルチビュー画像と3Dアセットを生成することができます。これは、広範な実験結果によって示されています。 • SDS最適化による3Dアセットの生成に加えて、彼らのMVControlネットワークは、3Dビジョンとグラフィックのコミュニティでさまざまなアプリケーションに役立つ可能性があります。

ソウル国立大学の研究者たちは、ディフュージョンベースモデリングを用いたVRにおけるドメインフリーな3Dシーン生成において、画期的なAI手法であるLucidDreamerを紹介します

商業的で混合現実プラットフォームの開発と、3Dグラフィックス技術の急速な進歩により、高品質な3Dシーンの作成はコンピュータビジョンの主要な課題の一つとなっています。これには、任意の入力テキスト、RGB、RGBD画像などをリアルな多様な3Dシナリオに変換する能力が求められます。3Dスキャンに基づく訓練データの制約により、ボクセル、ポイントクラウド、暗黙的なニューラル表現を使用して直接3Dオブジェクトとシーンを構築しようとする試みはあったものの、制限された多様性と品質を示しました。Stable Diffusionのような事前訓練された画像生成拡散モデルを使用して、多様な優れた3Dシナリオを生成するアプローチが問題の解決策の一つです。このような巨大なモデルは、大量の訓練セットから得られるデータ駆動型の知識に基づいて信じられる画像を生成しますが、生成される画像間の多視点の一貫性を保証することはできません。 ソウル大学の研究チームは、この論文で「LucidDreamer」というパイプラインを紹介しています。これは、テキスト、RGB、RGBDなどのさまざまな種類の入力から、3Dガウススプラッティングと安定した拡散を使用して高品質な3Dシナリオを生成するために交互に繰り返される「Dreaming」と「Alignment」という2つのステップを提供します。「LucidDreamer」パイプラインを使用して、1つの大きなポイントクラウドを作成します。2つのプロセスを開始する前に、元の画像と一致する深度マップで初期のポイントクラウドを作成します。幾何学的に一貫した画像を作成し、それらを三次元空間に投影することは、夢の体験の一部です。新しいカメラ座標上の可視ポイントクラウド領域を新しいカメラ平面に投影する前に、研究チームはカメラを事前に定義されたカメラ軌跡に沿って移動させます。次に、投影された画像はStable Diffusionベースのインペインティングネットワークに送られ、画像を使用してアイデア全体を作成します。インペインティングされた画像と予測された深度マップを3D空間に持ち上げることにより、新しい3Dポイントのコレクションが作成されます。次に、新しいポイントの位置を3D空間でゆっくりと移動させることにより、提案されたアライメント技術が現在のポイントクラウドにスムーズに結合します。以上の手順を十分な回数行った結果得られる巨大なポイントクラウドを、Gaussian splatsの最適化のためのSfMポイントの開始点として使用します。 3Dガウススプラッティングの連続的な表現により、ポイントクラウド内の深度差によるギャップがなくなり、より写真のような3Dシナリオを表示することができます。図1は、シンプルなLucidDreamerテクニックと共に3D生成の結果を示しています。現行のモデルと比較して、LucidDreamerは非常に現実的で驚くほどの結果を示します。研究チームによると、ScanNet、NYUDepth、Stable Diffusionの画像を条件とした作成された3Dシーンを比較すると、すべてのデータセットでより良い視覚効果が見られます。 図1:研究チームは、テキスト、RGB、RGBDなどの入力タイプから高品質で多視点一貫の3Dシナリオを生成するための基本的なフレームワーク「LucidDreamer」を作成します。RGBD画像を持ち上げて最初のポイントクラウドを生成した後、LucidDreamerはアライメントとドリーミングの2つのプロセスを繰り返してワールドモデルを成長させます。Gaussian splattingの表現を最適化することで、3Dシーンが完成します。 彼らのモデルは、現実的、アニメ、レゴ、屋外/屋内など、さまざまなジャンルの3Dシナリオを作成できます。そのコンセプトは多くのドメインをサポートし、複数の入力条件を同時に使用することができます。たとえば、テキストに基づいて3Dシーンを作成し、画像を追加することができます。これにより、テキストだけから意図したシーンを完全に作成する際の困難が解消され、大量のサンプルを作成する必要もありません。さらに、彼らの方法では、3D空間の作成中に入力条件を変更することができます。これらの機能は、さまざまな3D設定を構築する機会を提供することで創造性を刺激します。 以下は彼らがまとめて行った貢献です。 • 研究チームはLucidDreamerを提案します。これはドメインに依存しない高品質な3Dシーン制作ツールであり、明示的な3D表現、深度推定、安定した拡散を使用して、3Dシーン合成のドメイン一般化を改善します。 • 彼らのDreamingアプローチは、各画像生成のための幾何学的ガイドラインとしてポイントクラウドを生成し、Stable Diffusionから複数の視点の画像を生成します。生成された写真は彼らのAlignment技術を用いて巧みに統合され、一貫した3Dシーンが作成されます。 • 彼らの手法により、複数の入力タイプ(テキスト、RGB、RGBD)をサポートし、複数の入力を同時に使用したり、生成プロセス中に入力を変更したりすることで、ユーザーはさまざまな方法で3Dシーンを生成できます。

学ぶための勇気: L1&L2正則化の解明(パート3)

「‘MLの学びへの勇気:L1とL2正則化の解読’ 第3回目にお帰りなさい前回は、正則化の目的について掘り下げ、L1とL2の方法を解読しました…」

言語を使って、ロボットが広範な世界をより理解するために

「ロボティックマニピュレーションのための特徴領域メソッドでは、二次元の画像とビジョンの基礎モデルから三次元のシーンを形成することで、ロボットが近くのオブジェクトを識別するのに役立ちます」

このAI研究は、単一の画像を探索可能な3Dシーンに変換する、パノラマニックNeRF(PERF)を紹介します

NeRFは、2D画像から3Dシーンの再構築と視点合成を行うためのディープラーニング技術です。正確な3D表現を構築するには、通常、複数の画像やシーンのビューが必要です。NeRFは、異なる視点から撮影されたシーンの一連の画像を使用します。NeRFには、NeRF-Wなどの拡張や改良があり、より効率的で正確、さまざまなシナリオ、ダイナミックなシーン、リアルタイムのアプリケーションにも適用可能にすることを目指しています。その派生物は、コンピュータビジョン、コンピュータグラフィックス、3Dシーンの再構築の分野に大きな影響を与えました。 ただし、単一の画像があり、3Dの先行知識を組み込みたい場合、3D再構築の品質を向上させる必要があります。現在の技術は視野を制限するため、実世界の360度パノラマシナリオで大きなサイズを持つスケーラビリティを大幅に制限しています。研究者たちは、PERFと呼ばれる360度新規ビュー合成フレームワークを提案しています。Panoramic Neural Radiance field(パノラミックニューラルラディエンスフィールド)の略称です。彼らのフレームワークは、単一のパノラマからパノラミックニューラルラディエンスフィールドをトレーニングします。 パノラマイメージは、複数の画像を取り込んで、しばしば順番に撮影し、それらを縫い合わせて風景、都市景観、または他のシーンの無接続で広角の表現を形成することによって作成されます。研究チームは、訓練済みのStable Diffusion for RGB inpaintingを使用して、可視領域のRGBイメージと深度マップを補完するための共同RGBD inpainting手法を提案しています。また、入力パノラマからは見えない新しい外観と3D形状を生成するためのモノキュラーデプスエスティメータも訓練しました。 単一のパノラマからパノラミックニューラルラディエンスフィールド(NeRF)をトレーニングすることは、3D情報の欠如、大型オブジェクトの遮蔽、再構築と生成の関連問題、そしてインペイント中の可視領域と不可視領域の間のジオメトリの競合という課題に直面しています。これらの問題に対処するために、PERFは次の三つのステップから成り立っています:1)デプススーパビジョンによる単一ビューNeRFトレーニングの取得;2)ROIのRGBD inpaintingの共同作業;3)プログレッシブなインペイントとイレースのジェネレーションの使用。 ROIの予測されたデプスマップを最適化し、全体的なパノラマシーンと一貫性を持たせるために、彼らはインペイントとイレースの手法を提案しています。この手法では、不可視領域をランダムな視点からインペイントし、他の参照ビューから観測されるジオメトリの競合領域を消去することで、より良い3Dシーン補完を実現します。 研究者たちはReplicaデータセットとPERF-in-the-wildデータセットで実験を行いました。PERFは、新たなシングルビューパノラミックニューラルラディエンスフィールドの最新の状態であることを示しています。彼らはPERFがパノラマから3D、テキストから3D、3Dシーンのスタイル化のタスクに応用でき、いくつかの有望なアプリケーションで驚くべき結果が得られると述べています。 PERFはシングルショットNeRFの性能を大幅に向上させますが、デプスエスティメータとStable Diffusionの正確性に大きく依存します。したがって、チームは将来的な取り組みとして、デプスエスティメータと安定したディフュージョンモデルの正確性を向上させると述べています。

このAI研究では、「DreamCraft3D」という、結束力のある高精細な3Dモデルを生成するための階層的な手法を紹介しています

“` 2D生成モデリングの信じられないほどの人気は、ビジュアル素材の制作方法に大きな影響を与えています。3Dファブリックの作成にはまだ深層生成ネットワークに多くの困難があります。ゲーム、映画、バーチャルリアリティなどのアプリケーションには欠かせない要素です。一部のカテゴリでは3D生成モデリングが素晴らしい結果を生み出しているものの、広範な3Dモデルを生成するにはさらなる3Dデータが必要です。事前学習済みのテキストから画像への生成モデルは、最近の研究でガイドとして使用され、励ましの結果をもたらしています。DreamFusionは初めて事前学習済みのテキストから画像へのモデル(T2I)を3Dクリエーションに使用することを提案した会社です。ランダムな視点での3Dモデルの表現が強力なT2I拡散モデルによって解釈されるテキスト条件付きの画像分布に適合するように3Dモデルを改善するために、スコア蒸留サンプリング(SDS)ロスが実装されています。 DreamFusionは、2D生成モデルの創造的なポテンシャルを保持しながら、信じられないほどの発明的な3D素材を生み出すことができます。最近の研究では、階段状の最適化手法を使用したり、ブラーと過飽和の懸念に対処するために2D蒸留ロスを向上させたりしていますが、既存の研究のほとんどは2D生成モデルと同じ方法で複雑な素材を合成することができません。さらに、これらの研究は、3D表現が個別には信頼性のあるものの、全体としてスタイリスティックまたは意味的なエラーがあることがわかった場合に「Janusの問題」に陥ることがよくあります。本論文では、清華大学とDeepSeek AIの研究者が、包括的な3Dの一貫性を維持しながら複雑な3Dオブジェクトを作成するための方法として、DreamCraft3Dを提案しています。 彼らは階層的な生成の可能性を調査しています。具体的なアイデアが最初に2Dの下書きになるような手動の創造プロセスに影響を受けています。荒いジオメトリが彫り上げられ、ジオメトリの詳細が磨かれ、高品質のテクスチャが描かれます。彼らは同様のアプローチを取り、3Dクリエーションの難しいタスクを消化可能な部分に分解します。テキストの入力から高品質の2Dリファレンス画像を作成し、テクスチャを強化し、ジオメトリを彫刻する手順を使用して3Dに持ち込みます。他の手法とは異なり、彼らの研究は、各レベルでの細心の注意が階層的な生成のポテンシャルを最大化し、最高品質の3Dクリエーションを生み出すことができることを示しています。ジオメトリ彫刻の目標は、2Dリファレンス画像を一貫性があり信じられる3Dジオメトリに変換することです。 参照ビューと新しいビューにおけるフォトメトリックロスやSDSロス以外にも、ジオメトリの一貫性を高めるための他の戦術を提示しています。まず、Zero-1-to-3オフシェルフのビューポイント条件付き画像変換モデルを使用して、リファレンス画像に基づいた一意の意見の分布をシミュレートします。このビューポイント条件付きの拡散モデルは、さまざまな3D入力で訓練されているため、2D拡散を強化する豊かな3D事前知識を提供します。彼らはまた、徐々にトレーニングビューを増やし、サンプルのタイムステップをアニーリングすることが一貫性のさらなる強化に不可欠であることを発見しました。粗いから細かいジオメトリの調整の最適化中に、暗黙の表面表現からメッシュ表現に移行します。これらの手法を使用すると、ジオメトリ彫刻ステップは、ほとんどのジオメトリアーティファクトを効果的に抑えながら、正確で詳細なジオメトリを生成します。 さらに、テクスチャを大幅に改善するためにブートストラップスコア蒸留を使用することを提案しています。現代の2D拡散モデルの忠実度は、限られた3Dで訓練されたビューポイント条件付きの拡散モデルによってしばしば凌駕されます。代わりに、最適化中の3Dインスタンスの多視点表現を使用して拡散モデルを微調整します。このビューコンシステンシーを意識したカスタマイズされた3D拡散事前知識は、3Dテクスチャの向上に重要な役割を果たします。さらに、彼らは、生成的先行と3D表現を交互に改善することで相互に補完する利点を発見しました。より優れた多視点レンダリングでのトレーニングは、拡散モデルに役立ち、3Dテクスチャの最適化により良い方向性を提供します。 “` 図1:DreamCraft3Dは2D写真を3Dに拡大することで、豊富な特徴とリアリティのある3D一貫性を持つ3Dを生成します。詳細な内容については、デモビデオと付録をご覧ください。 以前の試みと異なり、彼らは固定された目標分布から学ぶのではなく、最適化状態に基づいて徐々に進化させることでそれを実現しています。「ブートストラップ」法により、彼らはビジョンの一貫性を保ちながら、ますます詳細なテクスチャをキャプチャできます。図1に示されているように、彼らの技法は複雑な幾何学的形状とリアルな素材を360度一貫して提示することで、想像力豊かな3Dオブジェクトを作成することができます。最適化ベースの代替手法と比較して、彼らの手法ははるかに優れたテクスチャと複雑さを提供します。一方、彼らの取り組みは画像から3Dへのプロセスと比較して、今までにないほどリアルな360°表現を生成することに優れています。これらの研究結果は、DreamCraft3Dが3Dコンテンツ制作の新しい創造的な道を切り拓く巨大な潜在能力を示しています。この実装は一般の方々にもアクセスできるようになります。

「GROOTに会おう:オブジェクト中心の3D先行条件と適応ポリシー汎化を備えたビジョンベースの操作のための堅牢な模倣学習フレームワーク」

人工知能の人気と利用事例の増加に伴い、模倣学習(IL)は複雑な操作タスクを実行するためのニューラルネットワークベースの視覚モーターストラテジーを教えるための成功した技術として示されてきました。様々な操作タスクを行うことができるロボットの構築の問題は、ロボット工学のコミュニティを長い間悩ませてきました。ロボットは、移動するカメラの視点変化、背景の変化、新しいオブジェクトの出現など、実世界の環境要素に直面します。これらの知覚の違いは、従来のロボット工学手法における障害として頻繁に示されてきました。 ILアルゴリズムの頑健性と適応性を改善することは、それらの能力を活用する上で重要です。以前の研究は、背景の色変更、カメラの視点変更、新しいオブジェクトの追加など、環境のわずかな視覚的変化でも、最終的な学習ポリシーに影響を与えることを示しています。その結果、ILポリシーは通常、適切にキャリブレーションされたカメラと固定背景を使用して制御された状況で評価されます。 最近、テキサス大学オースティン校とソニーAIの研究チームは、ビジョンを含む操作タスクに強力なポリシーを構築するための独自の模倣学習技術であるGROOTを紹介しました。この技術は、背景、カメラ視点、オブジェクト導入など、他の知覚変化による実世界の環境でロボットがうまく機能することを可能にすることを目指しています。これらの障壁を乗り越えるため、GROOTはオブジェクト中心の3D表現を構築し、トランスフォーマーベースの戦略を用いてそれらを推論し、テスト時に新しいオブジェクトに汎用するためのセグメンテーションに関する接続モデルを提案しています。 オブジェクト中心の3D表現の開発がGROOTのイノベーションの中核です。これらの表現の目的は、ロボットの知覚を導き、タスクに関連する要素に集中させ、視覚的な邪魔を排除するのに役立ちます。3次元で考えることによって、ロボットにはより直感的な環境把握力が与えられ、意思決定のための強力なフレームワークが与えられます。GROOTは、これらのオブジェクト中心の3D表現を推論するためにトランスフォーマーベースのアプローチを使用しています。GROOTは、これらの3D表現を効率的に分析し、判断を下すことができます。これは、ロボットにより洗練された認知能力を与える重要な一歩です。 GROOTは、初期のトレーニング設定の外部にも汎用化能力を持っており、様々な背景、カメラ角度、そしてまだ観察されていないアイテムに適応する能力があります。一方、多くのロボット学習手法はこれらの状況で不器用でうまくいきません。GROOTは、その優れた汎用化能力により、実際の世界でロボットが直面する複雑な問題に優れた解決策となっています。 GROOTは、チームによって数多くの詳細な研究を通じてテストされています。これらのテストは、シミュレーション環境と実世界の環境の両方でGROOTの能力を徹底的に評価しています。知覚的な差異が存在する場合、特にシミュレーション状況で非常に優れたパフォーマンスを発揮し、オブジェクト提案ベースのタクティクスやエンドツーエンドの学習手法などの最新技術を上回っています。 結論として、ロボットのビジョンと学習の領域では、GROOTは重要な進歩です。その堅牢性、適応性、および実世界シナリオでの汎用性への重点は、多くのアプリケーションを可能にするかもしれません。GROOTは、ダイナミックな世界での頑健なロボット操作の問題に取り組み、複雑でダイナミックな環境でのロボットの優れたかつスムーズな機能をもたらしました。

世界に向けて:非営利団体がGPUパワードのシミュレータを展開し、視力保存手術のプロバイダをトレーニングする

GPUを搭載した手術シミュレーションデバイスは、非営利団体HelpMeSeeのおかげで、毎年2,000人以上の医師が低所得国で白内障失明の治療を学ぶのに役立っています。白内障は世界で最も多くの失明を引き起こす主要な原因です。 白内障手術は約99%の成功率を持っていますが、低所得および中所得国の多くの患者は、眼科医の深刻な不足のために一般的な手術を受ける機会がありません。白内障による視覚障害や失明で影響を受けている1億人のうち、推定90%がこれらの地域にいます。 HelpMeSeeは、眼科学の専門性を持たない医療提供者を含めて白内障の治療を行うことにより、ムンバイ近くのビワンディに住む2人の子供の母親など、患者の生活の質を向上させています。彼女は両眼の白内障で失明していました。 「手術後、彼女の視力は劇的に改善し、仕事を始めることができ、彼女の家族の全体の人生を変えました」とインドのHelpMeSeeのチーフインストラクターであり専門家のDr. Chetan Ahiwalayは言います。「彼女と彼女の夫は今幸せに子供たちを育て、健康な生活を送っています。私たち医者として続けていく原動力はこういったことです。」 HelpMeSeeのシミュレータデバイスは、高品質の視覚を描写するためにNVIDIA RTX GPUを使用し、医師が手術技術を磨くためにより現実的な訓練環境を提供しています。さらに、NVIDIAの専門家は、レンダリング性能の向上、視覚的なリアリズムの向上、リアルタイムのレイトレーシングやAIなどの次世代技術をシミュレータに組み込むために、HelpMeSeeのチームと協力しています。 アクセス可能な訓練で治療可能な盲目を解決する 高所得国は、一般住民一人当たりに対して低所得国よりも18倍以上の眼科医を有しています。このカバレッジのギャップは、特定の国々ではさらに広がっており、資源が限られた地域の人々が回避可能な盲目の治療を受けるのが困難になっています。 HelpMeSeeのデバイスは、航空業界で使用されるフライトシミュレータに触発された没入型ツールを使用して、医師を複数の眼科手術に訓練することができます。チームは、インド、中国、マダガスカル、メキシコ、アメリカなどの国で医師にトレーニングを行い、毎年新たな手術のために多言語の訓練を展開しています。 眼科手術シミュレータは、現実的な3Dビジュアル、触覚フィードバック、パフォーマンススコア、繰り返し手順を試みる機会などを提供して、受講生が熟練度を達成するまで手順の一部を行うことができます。Dr. Ahiwalayなどの有資格な講師は、訓練を構造化されたコースで農村部や都市部に届けるとともに、シミュレータから実際の手術への移行を支援します。 トレーニングセッション中、医師はマニュアルの小切開白内障手術を行う方法を学びます。 「私たちは医療従事者が患者に深い影響を与える特定の技術を学ぶための障壁を低くしています」とニューヨークに拠点を置くHelpMeSeeのCEOであるDr. Bonnie An Hendersonは述べています。「シミュレーションベースのトレーニングにより、手術の技術が向上し、患者の安全性が向上します。」 AIと高度なレンダリングに向けて HelpMeSeeは、ゴーテンブルグに拠点を置く医療用仮想現実シミュレータの供給業者であるSurgical Scienceと共同で、デバイスのための3Dモデルとリアルタイムのレンダリングを開発しています。その他の共同開発者であるフランスのストラスブールに拠点を置くInSimoとインドのプネーに拠点を置くHarman Connected Servicesは、物理ベースのシミュレーションとユーザーインターフェースの開発に取り組んでいます。…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us