Learn more about Search Results 23

「2023年、オープンLLMの年」

2023年には、大型言語モデル(Large Language Models、LLMs)への公衆の関心が急増しました。これにより、多くの人々がLLMsの定義と可能性を理解し始めたため、オープンソースとクローズドソースの議論も広範な聴衆に届くようになりました。Hugging Faceでは、オープンモデルに大いに興味を持っており、オープンモデルは研究の再現性を可能にし、コミュニティがAIモデルの開発に参加できるようにし、モデルのバイアスや制約をより簡単に評価できるようにし、チェックポイントの再利用によってフィールド全体の炭素排出量を低減するなど、多くの利点があります(その他の利点もあります)。 では、オープンLLMsの今年を振り返ってみましょう! 文章が長くなりすぎないようにするために、コードモデルには触れません。 Pretrained Large Language Modelの作り方 まず、大型言語モデルはどのようにして作られるのでしょうか?(もし既に知っている場合は、このセクションをスキップしてもかまいません) モデルのアーキテクチャ(コード)は、特定の実装と数学的な形状を示しています。モデルのすべてのパラメータと、それらが入力とどのように相互作用するかがリストとして表されます。現時点では、大部分の高性能なLLMsは「デコーダーのみ」トランスフォーマーアーキテクチャのバリエーションです(詳細は元のトランスフォーマーペーパーをご覧ください)。訓練データセットには、モデルが訓練された(つまり、パラメータが学習された)すべての例と文書が含まれています。したがって、具体的には学習されたパターンが含まれます。ほとんどの場合、これらの文書にはテキストが含まれており、自然言語(例:フランス語、英語、中国語)、プログラミング言語(例:Python、C)またはテキストとして表現できる構造化データ(例:MarkdownやLaTeXの表、方程式など)のいずれかです。トークナイザは、訓練データセットからテキストを数値に変換する方法を定義します(モデルは数学的な関数であり、したがって入力として数値が必要です)。トークン化は、テキストを「トークン」と呼ばれるサブユニットに変換することによって行われます(トークン化方法によっては単語、サブワード、または文字になる場合があります)。トークナイザの語彙サイズは、トークナイザが知っている異なるトークンの数を示しますが、一般的には32kから200kの間です。データセットのサイズは、これらの個々の「原子論的」単位のシーケンスに分割された後のトークンの数としてよく測定されます。最近のデータセットのサイズは、数千億から数兆のトークンに及ぶことがあります!訓練ハイパーパラメータは、モデルの訓練方法を定義します。新しい例ごとにパラメータをどれだけ変更すべきですか?モデルの更新速度はどのくらいですか? これらのパラメータが選択されたら、モデルを訓練するためには1)大量の計算パワーが必要であり、2)有能な(そして優しい)人々が訓練を実行し監視する必要があります。訓練自体は、アーキテクチャのインスタンス化(訓練用のハードウェア上での行列の作成)および上記のハイパーパラメータを使用して訓練データセット上の訓練アルゴリズムの実行からなります。その結果、モデルの重みが得られます。これらは学習後のモデルパラメータであり、オープンな事前学習モデルへのアクセスに関して多くの人々が話す内容です。これらの重みは、推論(つまり、新しい入力の予測やテキストの生成など)に使用することができます。 事前学習済みLLMsは、重みが公開されると特定のタスクに特化または適応することもあります。それらは、「ファインチューニング」と呼ばれるプロセスを介して、ユースケースやアプリケーションの出発点として使用されます。ファインチューニングでは、異なる(通常はより専門化された小規模な)データセット上でモデルに追加の訓練ステップを適用して、特定のアプリケーションに最適化します。このステップには、計算パワーのコストがかかりますが、モデルをゼロから訓練するよりも財政的および環境的にはるかにコストがかかりません。これは、高品質のオープンソースの事前学習モデルが非常に興味深い理由の一つです。コミュニティが限られたコンピューティング予算しか利用できない場合でも、自由に使用し、拡張することができます。 2022年 – サイズの競争からデータの競争へ 2023年以前、コミュニティで利用可能だったオープンモデルはありましたか? 2022年初頭まで、機械学習のトレンドは、モデルが大きければ(つまり、パラメータが多ければ)、性能が良くなるというものでした。特に、特定のサイズの閾値を超えるモデルは能力が向上するという考えがあり、これらの概念はemergent abilitiesとscaling lawsと呼ばれました。2022年に公開されたオープンソースの事前学習モデルは、主にこのパラダイムに従っていました。 BLOOM(BigScience Large Open-science…

「2023年の振り返り:Post-ChatGPT時代のまとめと2024年の期待」

「ChatGPT、LangChain、ベクトルデータベース、およびRAGについての技術イベントと進歩に関するレビュージェネラティブAI領域のすべてをカバーします」

「NeurIPS 2023のハイライトと貢献」

「ニューラル情報処理システム(Neural Information Processing Systems)カンファレンスであるNeurIPS 2023は、学問的な追及とイノベーションの頂点として存在していますAI研究コミュニティーで崇拝されるこの一流イベントは、再び最も優れた知識と技術の領域を突破しようとする優れたマインドを集めました今年、NeurIPSは印象的な研究の数々を披露し、知識と技術の範疇において重要なマイルストーンを打ち立てました」

「医療の分野における人工知能モデルのリスト(2023年)」

<img alt=”” src=”https://ai.miximages.com/www.marktechpost.com/wp-content/uploads/2023/12/18-1024×618.gif”/><img alt=”” src=”https://ai.miximages.com/www.marktechpost.com/wp-content/uploads/2023/12/18-150×150.gif”/><p>今年だけでも、人工知能(AI)が進化を遂げた数を考えると、2023年を通じて重要な議論の中心となっていることは驚くべきことではありません。AIは今やほぼあらゆる領域で活用されており、その中でも興味深く有用な応用の1つが医療と医学の分野です。薬物の発見から医療文書の転写、手術の支援まで、医療従事者の生活を変え、誤りを減らし、効率を向上させています。この記事では、2023年に医療現場を変革する可能性のあるいくつかのAIモデルについて説明します。</p><h2><a href=”https://www.voagi.com/google-deepminds-recent-advancements-analogical-stepback-prompting.html”><strong>Med-PaLM 2</strong></a></h2><p>Google Researchが医療分野向けに設計したMed-PaLMは、医療の質問に高品質な回答ができるモデルです。このモデルはGoogleのLLMの力を活用しており、米国医師国家試験のような質問に回答する際には人間の専門家レベルに達する最初のモデルの1つです。評価された結果、このモデルは症状を理解し、複雑な推論を行い、適切な治療法を選択する能力を示しました。さらに、研究の中でMedQA医学試験のベンチマークで86.5%の正確さを達成しました。有望な能力を示しているものの、研究者はより厳密な評価を行い、安全性の重要な領域での展開が可能かどうかを確認するためにさらなる評価を行いたいと考えています。</p><h2><a href=”/?s=Bioformer”><strong>Bioformer</strong></a></h2><p>Bioformerは、バイオメディカルテキストマイニングに使用できるBERTのコンパクト版です。BERTは自然言語処理のアプリケーションで最先端の性能を達成していますが、計算効率を向上させるためにパラメータを減らすことができます。Bioformerの研究者たちは、このアプローチを取り、BERTよりもモデルサイズが大幅に小さいモデル(60%削減)を開発しました。このモデルはPubMedの要約とPubMed Centralの全文記事で訓練され、バイオメディカル用語を使用しています。研究者は2つのバージョンのモデル、Bioformer8LとBioformer16Lをリリースしましたが、名前の識別、関係抽出、質問応答、文書分類などのパラメータで少ないパラメータでもうまく機能しました。</p><h2><a href=”https://www.voagi.com/google-ai-has-launched-medlm-a-series-of-foundation-models-specifically-tailored-for-the-healthcare.html”><strong>MedLM</strong></a></h2><p>MedLMは、Googleが開発した基礎モデルのスイートで、医療ケースに特化してファインチューニングされています。MedLMの下には複雑なタスクに対応し、タスク間でのスケーリングを可能にする2つのモデルが設計されています。これらのモデルの主な目的は、タスクを自動化して時間を節約し、効率を向上し、全体的な患者の健康を改善することです。Googleの研究者はDeloitteと協力して、MedLMの能力を実証するためのパイロットを行っています。MedLMはまた、BenchSciのASCENDなど他のAIシステムと統合されており、臨床研究の品質と速度を向上させるために活用されています。</p><h2><a href=”/?s=RoseTTAFold”><strong>RoseTTAFold</strong></a></h2><p>RoseTTAFoldは、限られた情報から蛋白質の構造を予測するためのディープラーニングを活用したソフトウェアです。このモデルは蛋白質配列のパターン、アミノ酸の相互作用、および3D構造を研究することができます。このモデルにより、研究者は蛋白質と小分子薬剤の相互作用のモデル化が可能になり、これにより薬剤探索の研究が促進されます。モデルの研究者はまた、コードを公開して、全コミュニティの利益に資するようにしています。</p><h2><a href=”https://www.voagi.com/revolutionizing-biological-molecule-predictions-with-deepminds-alphafold.html”><strong>AlphaFold</strong></a></h2><p>AlphaFoldは、DeepMindが開発した強力なAIモデルで、アミノ酸配列から蛋白質の3D構造を予測することができます。DeepMindはEMBL(EMBL-EBI)のEuropean Bioinformatics Instituteとパートナーシップを組んで、20億以上のAI生成蛋白質構造予測を含むデータベースを公開し、科学研究を促進しています。CASP14では、AlphaFoldは他のモデルよりも高い精度で結果を出し、高い正確性を持ちます。さらに、このモデルは研究者が蛋白質構造を理解し、生物学的研究を進めるのに役立つ潜在能力を持っています。</p><h2><a href=”/?s=ChatGLM-6B”><strong>ChatGLM-6B</strong></a></h2> ChatGLMは中国語と英語のバイリンガルモデルであり、中国語の医療対話データベースを元に微調整されています。モデルは比較的短い時間(13時間)で微調整されたため、非常に手頃な医療目的のLLMです。モデルはより長いシーケンス長を持つため、より長い対話や応用に対応しています。モデルは教師あり微調整、RLHFなどの技術を使用してトレーニングされました。これにより、モデルは人間の指示をより理解することができます。その結果、モデルは優れた対話と質問応答の能力を持っています。 記事:List of Artificial Intelligence Models for Medical…

「パブリックスピーキングのための5つの最高のAIツール(2023年12月)」

「人工知能の領域において、公の演説にAIツールを応用することは大きな進歩を意味しますこれらのツールは、スピーキングスキルの向上に役立つ実用的なソリューションを提供し、あらゆるレベルのスピーカーが直面する共通の課題に対処しますAI技術を活用することで、これらのツールはスピーチのデリバリー、コンテンツの構成、聴衆の関与に関する貴重な洞察を提供します私たちの探究...」

「DevOps 2023年の状況報告書:主要な調査結果と洞察」

年次調査の結果が発表されました画期的な発見がありますこのレポートは、AIとドキュメンテーションが生産性と仕事の満足度に与える影響を詳しく調査しています

「23andMeにおける複数の個人情報漏洩」

「盗まれた遺伝子データがテスト会社に対する集団訴訟につながる」

TDSベストオブ2023:ChatGPTとLLMについて

「2023年は、データサイエンティストや機械学習の専門家にとって、波瀾万丈な1年だったと言っても過言ではないでしょうが、過去12ヶ月のフィールドで見られた激動の活動量を完全に表現することはできません」

「2023年のAI タイムライン」

はじめに 人工知能(AI)は、技術的な進歩が人間のつながりの本質と共鳴する形で私たちの日常生活と交差する魅力的な領域です。今年は、単なるアルゴリズムを超えてAIを身近に感じる革新の物語が展開されました。2023年のAIの素晴らしいハイライトを探索しながら、この旅に参加しましょう。 AI 2023年のハイライト 2023年のAIの世界で行われた最大の発見、進歩、および世界的な変革の一部を紹介します。これらの進歩がどのように、技術が私たちの人間の体験にシームレスに統合される未来を形作っているのか、探求してみましょう。 2023年1月のAIハイライト この年は、AIが医療と健康の分野で重要な進展を示しました。MITの研究者はマサチューセッツ総合病院と連携し、CTスキャンに基づいて患者の肺がんのリスクを評価できるディープラーニングモデルを開発しました。また、革命的な進歩として、研究者たちはAIを使ってゼロから人工的な酵素やタンパク質を作り出すことが可能なAIを開発しました。 他にも多くのイノベーションの中で、人工知能は視覚障害のある人々が食料品を見つけるのを手助けするために手杖に統合されました。一方、ビジネスのフロントでは、OpenAIがMicrosoftとの数年間にわたる数十億ドルの取引を通じてAIの開発に大きく投資しました。 2023年2月のAIハイライト 2023年2月には、OpenAIのChatGPTに関する話題が最も盛り上がりました。このAI搭載のチャットボットは、アメリカ合衆国医師資格試験(USMLE)に合格し、その人気は1億人以上のユーザーにまで急上昇しました。 ChatGPTの現象に応えて、GoogleはAI会話の領域に新しい要素となるBard A.I.を導入しました。また、MicrosoftもChatGPTと統合された新しいBing検索エンジンの導入に重要な一歩を踏み出しました。 Metaは、Metaエコシステム内でAIの能力を向上させるというLLaMAを発表しました。一方、Amazon Web Services(AWS)は、一流のAIプラットフォームであるHugging Faceと提携し、AI開発者を支援しました。 画期的な成果として、オックスフォードの研究者たちはRealFusionを示し、単一の画像から完全な360°写真モデルを再構築することができる最新のモデルを実証しました。 2023年2月には、AIの世界は音楽生成の領域にも足を踏み入れました。Google ResearchはMusicLMを紹介し、さまざまなジャンル、楽器、概念で曲を作成できるトランスフォーマーベースのテキストからオーディオへのモデルを提供しました。一方、Baiduの研究者はERNIE-Musicを発表し、拡散モデルを使用して、波形領域での最初のテキストから音楽を生成するモデルを開発しました。これらのモデルは、AIと創造的表現の融合における重要な進歩を示しています。 2023年3月のAIハイライト 2023年3月には、創造的なAIはいくつかの興味深い進展を見せました。AdobeはFireflyというAIをバックアップする画像生成および編集ツールの範囲でGenAIの領域に参入しました。一方、Canvaはユーザー向けにAIパワードの仮想デザインアシスタントとブランドマネージャーを導入しました。 テックジャイアンツのAIプロジェクトは、第1四半期終盤に向けて全力で進展していました。OpenAIはChatGPTとWhisperというテキストから音声へのモデルのためのAPIを発売しました。OpenAIはまた、ChatGPTのためのいくつかのプラグインをリリースし、最も高度なAIモデルであるGPT-4を正式に発表しました。 HubSpotはユーザー向けにChatSpot.aiとContent Assistantという2つの新しいAIパワードツールを導入しました。ZoomはスマートコンパニオンのZoom…

2023年に再訪するトップの生成AI GitHubリポジトリ

はじめに 2023年も終わりに近づき、人工知能の領域は忍び足で進化を続けています。最新の進歩について追いかけることは、動く標的を追うようなものです。幸いにも、GitHubの活気あるエコシステムの中には、貴重な情報源が数多く存在しています。ここでは、2024年を含む将来のAI学習のためのスプリングボードとなる、トップのAI GitHubリポジトリを紹介します。この厳選されたリストは完全ではありませんが、関連性、インパクト、および好奇心を刺激する潜在能力により、それぞれのリポジトリが評価されています。 Hugging Face / Transformers 117k スター | 23.3k フォーク このリポジトリは、自然言語処理(NLP)に興味のある人々にとって宝庫です。BERT、RoBERTa、T5などのさまざまな事前学習済みのTransformerベースのモデル、詳細なドキュメント、チュートリアル、そして活気あるコミュニティがホスティングされています。 主な特徴 幅広い事前学習済みモデル、包括的なドキュメント、活発なコミュニティサポート、多様なアプリケーションの可能性、他のライブラリとの簡単な統合。 このGenerative AI GitHubリポジトリを探索するには、ここをクリックしてください。 Significant Gravitas / AutoGPT 155k スター…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us