Learn more about Search Results 1

2024年にフォローするべきデータサイエンスのトップ12リーダー

データサイエンスの広がりを見据えると、2024年の到来は、革新を牽引し、分析の未来を形作る一握りの著名人にスポットライトを当てる重要な瞬間として迎えられます。『Top 12 Data Science Leaders List』は、これらの個人の卓越した専門知識、先見のリーダーシップ、および分野への重要な貢献を称えるビーコンとして機能します。私たちは、これらの画期的なマインドの物語、プロジェクト、そして先見の見通しをナビゲートしながら、データサイエンスの進路を形作ると約束された航跡を探求します。これらの模範的なリーダーたちは単なるパイオニアにとどまることはありません。彼らは無類のイノベーションと発見の時代へと私たちを導く先駆者そのものです。 2024年に注目すべきトップ12データサイエンスリーダーリスト 2024年への接近とともに、データサイエンスにおいて傑出した専門知識、リーダーシップ、注目すべき貢献を示す特異なグループの人々に焦点を当てています。『Top 12 Data Science Leaders List』は、これらの個人を認識し、注目することで、彼らを思想リーダー、イノベーター、およびインフルエンサーとして認め、来年重要なマイルストーンを達成することが予想されます。 さらに詳細に突入すると、これらの個人の視点、事業、イニシアチブが、さまざまなセクターを横断する複雑な課題に対するメソッドとデータの活用方法を変革することが明らかになります。予測分析の進展、倫理的なAIの実践の促進、または先進的なアルゴリズムの開発など、このリストでハイライトされた個人たちが2024年にデータサイエンスの領域に影響を与えることが期待されています。 1. Anndrew Ng 「AIのゲームにおいて、適切なビジネスコンテキストを見つけることが非常に重要です。私はテクノロジーが大好きです。それは多くの機会を提供します。しかし結局のところ、テクノロジーはコンテクスト化され、ビジネスユースケースに収まる必要があります。」 Dr. アンドリュー・エングは、機械学習(ML)と人工知能(AI)の専門知識を持つ英米のコンピュータ科学者です。AIの開発への貢献について語っている彼は、DeepLearning.AIの創設者であり、Landing AIの創設者兼CEO、AI Fundのゼネラルパートナー、およびスタンフォード大学コンピュータサイエンス学科の客員教授でもあります。さらに、彼はGoogle AIの傘下にある深層学習人工知能研究チームの創設リードでありました。また、彼はBaiduのチーフサイエンティストとして、1300人のAIグループの指導や会社のAIグローバル戦略の開発にも携わりました。 アンドリュー・エング氏は、スタンフォード大学でMOOC(大規模オープンオンラインコース)の開発をリードしました。また、Courseraを創設し、10万人以上の学生に機械学習のコースを提供しました。MLとオンライン教育の先駆者である彼は、カーネギーメロン大学、MIT、カリフォルニア大学バークレー校の学位を保持しています。さらに、彼はML、ロボット工学、関連する分野で200以上の研究論文の共著者であり、Tiime誌の世界で最も影響力のある100人のリストに選ばれています。…

「コンピュータビジョン101」

コンピュータビジョンの進歩により、未来には莫大な可能性がありますその変革的な影響は、さまざまな産業にまたがっています

「MLを学ぶ勇気:F1、再現率、適合率、ROC曲線により深く掘り下げる」

「「勇気を持って機械学習を学ぶ」シリーズへようこそこのセッションでは、メトリクスの微妙な世界を探究しています多くの資料はこれらのメトリクスを紹介したり、詳しく取り上げたりしますが…」

アップステージがSolar-10.7Bを発表:一回の会話用に深いアップスケーリングと微調整された精度を持つ先駆的な大規模言語モデルを実現

韓国のAI企業、Upstageの研究者たちは、言語モデルのパフォーマンスを最大化し、パラメータを最小化するという課題に取り組んでいます。モデルのサイズがパフォーマンスと関連している大規模言語モデル(LLM)において、Upstageは10.7兆の重み付けを持つ画期的なモデル、「Solar-10.7B」を導入しました。この革新は、3000億以上のパラメータを持つモデルにおけるモデルのサイズとパフォーマンスの間に生じる相反関係に対処しています。 既存のツールと異なり、UpstageのSolar-10.7Bは、Llama 2アーキテクチャを採用し、Upstage Depth Up-Scalingという新しい技術を使用しています。この方法は、Mistral 7BからアップスケーリングされたレイヤーにMistral 7Bの重み付けを統合し、包括的な事前学習を行います。Solar-10.7Bのコンパクトな設計と優れたパフォーマンスは、Mixtral 8X7Bなどのより大きなモデルすらも上回ります。さまざまな言語のタスクにおいて適応性と堅牢性を実証するための微調整と展示に理想的なモデルです。 さらに、Upstageはシングルターンの対話に特化したファインチューニング版「SOLAR-10.7B-Instruct-v1.0」も提供しています。監視付きファインチューニング(SFT)や直接的な意志最適化(DPO)など、最新のインストラクションのファインチューニング手法を活用し、多様なデータセットをトレーニングに使用しました。このファインチューニングモデルは、驚異的なModel H6スコア74.20を達成し、シングルターンの対話シナリオにおける効果を誇示しています。 Solar-10.7Bのパフォーマンスは、その洗練されたアーキテクチャとトレーニング戦略に根ざしています。Llama 2アーキテクチャを基にしたDepth Up-Scaling技術により、30兆パラメータまでのモデルを凌駕することができます。Mistral 7Bの重み付けをアップスケーリングされたレイヤーに統合することは、その素晴らしいパフォーマンスに貢献し、Mixtral 8X7Bモデルさえも上回ります。評価結果は、Solar-10.7Bの能力を示し、Model H6スコア74.20を記録しており、自然言語処理においてさらなるパフォーマンス最適化の追求を証明しています。 ファインチューニングされたSOLAR-10.7B-Instruct-v1.0は、他のモデルに比べて優れたModel H6スコア74.20でシングルターンの対話シナリオで優れたパフォーマンスを発揮しています。教授ベースのトレーニングのために慎重に選別されたデータセットを活用するこのファインチューニングアプローチは、その適応性とパフォーマンスの向上を一層強調しています。 まとめると、Solar-10.7Bおよびそのファインチューニング版は、大規模言語モデルの領域における重要な進歩を表しています。モデルのサイズとパフォーマンスのバランスを取るという課題に取り組むために、Upstageの研究者たちは戦略的にこれらのモデルを設計し、ファインチューニングして最先端の結果を提供しています。革新的なDepth Up-Scaling技術とMistral 7Bの統合は、適応性と効率性を示しています。研究者たちが言語モデルの開発の限界を押し広げ続ける中で、Solar-10.7Bとそのファインチューニング版は、自然言語処理におけるパフォーマンス最適化の追求の証となっています。 UpstageがSolar-10.7Bを発表:Depth Up-Scalingとファインチューニングされた精度によるシングルターン対話における大規模言語モデルの先駆的な取り組み は、MarkTechPostで最初に公開されました。

「パブリックスピーキングのための5つの最高のAIツール(2023年12月)」

「人工知能の領域において、公の演説にAIツールを応用することは大きな進歩を意味しますこれらのツールは、スピーキングスキルの向上に役立つ実用的なソリューションを提供し、あらゆるレベルのスピーカーが直面する共通の課題に対処しますAI技術を活用することで、これらのツールはスピーチのデリバリー、コンテンツの構成、聴衆の関与に関する貴重な洞察を提供します私たちの探究...」

Pythonの地図を使って貿易流をビジュアライズする – 第1部:双方向貿易流マップ

商品やサービスの交換は、それらの対応する価値と引き換えに私たちの日常生活の重要な一部です同様に、国々はさまざまな種類の貿易関係を築いています

このAI論文は、デュアル1-Dヒートマップを使用したリアルタイムマルチパーソンポーズ推定の画期的な技術であるRTMOを紹介しています

姿勢推定とは、物体の位置と方向を空間上で決定することを含む分野であり、継続的に新しい手法を開発して精度とパフォーマンスを向上させてきました。清華深圳国際研究大学院、上海AIラボ、南洋理工大学の研究者たちは、最近、新しいRTMOフレームワークを開発することでこの分野に貢献しました。このフレームワークは、姿勢推定の精度と効率を向上させるポテンシャルを持ち、ロボット工学、拡張現実、仮想現実など、さまざまなアプリケーションに大きな影響を与える可能性があります。 RTMOは既存の手法における精度とリアルタイム性のトレードオフを解消するために設計されたワンステージの姿勢推定フレームワークです。RTMOは座標の分類と密な予測モデルを統合し、トップダウンアプローチと同等の精度を実現しながら、高速性を維持することで、他のワンステージの姿勢推定器を凌駕しています。 リアルタイムのマルチパーソン姿勢推定はコンピュータビジョンの課題であり、既存の手法は速度と精度のバランスをとるために支援が必要です。トップダウンアプローチまたはワンステージアプローチのいずれかには、推論時間または精度の制約があります。RTMOはワンステージの姿勢推定フレームワークであり、YOLOアーキテクチャと座標の分類を組み合わせています。RTMOは動的座標分類器と特別な損失関数を用いて課題を解決し、COCOでの高い平均適合度を維持しながら、リアルタイムのパフォーマンスを実現しています。 この研究では、YOLOのようなアーキテクチャを使用し、背骨とハイブリッドエンコーダを持つRTMOというリアルタイムのマルチパーソン姿勢推定フレームワークを提案しています。デュアル畳み込みブロックは各空間レベルでスコアとポーズ特徴を生成します。この手法は動的座標分類器と特別な損失関数を用いて、座標の分類と密な予測モデルの非互換性に対処しています。動的ビンエンコーディングを使用してビンごとの表現を作成し、クラス分類タスクにはガウスラベルスムージングと交差エントロピー損失を用いています。 RTMOは、高い精度とリアルタイム性を備えたワンステージの姿勢推定フレームワークであり、先端のワンステージ姿勢推定器よりも優れた性能を発揮し、同じ背骨を使用しておよそ9倍速く動作します。最大モデルのRTMO-lはCOCO val2017で74.8%のAPを達成し、単一のV100 GPUで秒あたり141フレームを実行します。異なるシナリオで、RTMOシリーズはパフォーマンスと速度で同等の軽量なワンステージ手法を上回り、効率と正確性を示しています。追加のトレーニングデータを使用することで、RTMO-lは最新の81.7の平均適合度を達成します。このフレームワークは、各キーポイントに対して頑強かつコンテキスト感知型の予測を容易にする空間的に正確なヒートマップを生成します。 https://arxiv.org/abs/2312.07526v1 まとめると、この研究の要点は以下の通りです: RTMOは高い精度とリアルタイム性を持つ姿勢推定フレームワークです。 RTMOはYOLOアーキテクチャ内で座標の分類をシームレスに統合しています。 RTMOは、座標ビンを使用した革新的な座標の分類技術を活用し、正確なキーポイントの位置特定を実現しています。 RTMOは、先端のワンステージ姿勢推定器を凌駕し、COCOで高い平均適合度を達成しながらも、大幅に高速です。 RTMOは難しいマルチパーソンのシナリオで優れた性能を発揮し、頑健な、コンテキスト感知型の予測のための空間的に正確なヒートマップを生成します。 RTMOは既存のトップダウンおよびワンステージのマルチパーソン姿勢推定手法のパフォーマンスと速度をバランスさせます。

「2024年に使用するためのトップ10のリアルタイムデータベース」

導入 現代アプリケーションのダイナミックな世界において、リアルタイムデータベースはスムーズなデータ管理と即時の更新を維持するために重要です。大量のデータを扱うために設計されたこれらのデータベースは、情報への瞬時のアクセスを提供します。この記事では、2024年に影響を与えるであろうトップ10のリアルタイムデータベースについて詳しく説明します。 リアルタイムデータベースの理解 リアルタイムデータベースは即時の更新とアクセスが必要なデータを管理するために作成されています。同期の遅延が発生する従来のデータベースとは異なり、リアルタイムデータベースはすべての接続されたデバイスやアプリケーションにデータ変更の迅速な反映を保証します。これにより、リアルタイムのコラボレーション、メッセージング、モニタリングのニーズを持つアプリケーションに適しています。 現代アプリケーションにおけるリアルタイムデータベースの重要性 リアルタイムデータベースの重要性は、即時のデータ更新と同期の需要により、現代のアプリケーションで増大しています。メッセージングアプリから共同編集可能なドキュメントエディタ、リアルタイムアナリティクスダッシュボードまで、これらのデータベースはスムーズなデータ管理と瞬時のコミュニケーションの基盤となります。データ同期の遅延を解消することにより、リアルタイムデータベースはユーザーエクスペリエンスを向上させるだけでなく、効率的かつデータに基づく意思決定を可能にします。 トップ10のリアルタイムデータベース 以下は、2024年に使用するトップ10のリアルタイムデータベースのリストです。 1. Firebase リアルタイムデータベース Firebase リアルタイムデータベースはクラウドホスト型のNoSQLデータベースであり、開発者がデータをリアルタイムに保存および同期できるようにします。JSONデータモデルの使用は、開発プロセスに柔軟性と簡便さをもたらします。Firebaseプラットフォームの重要なコンポーネントとして、ウェブとモバイルの両方のアプリケーションを作成するための強力なツールキットに貢献します。 機能と利点 Firebase リアルタイムデータベースの優れた機能の1つは、データ変更があった場合にすべての接続されたデバイスで瞬時の更新が保証されるリアルタイム同期です。これにより、ユーザーは常に最新の情報を得ることが保証されます。さらに、データベースはオフラインサポートを提供し、インターネットに接続していない状況でもデータにアクセスおよび変更を行うことができます。Firebase リアルタイムデータベースは堅牢なセキュリティルールを取り入れており、機密データへの不正アクセスからデータを保護します。 ユースケースと例 Firebase リアルタイムデータベースは、チャットアプリ、共同編集可能なドキュメントエディタ、リアルタイムダッシュボードなど、リアルタイムの更新を要求するアプリケーションで広く使用されています。例えば、Firebase リアルタイムデータベースを活用したメッセージングアプリは、すべての参加者に迅速にメッセージを配信し、シームレスかつリアルタイムのコミュニケーション体験を作り出します。 こちらから入手できます: https://firebase.google.com/ 2.…

ロボ犬が100メートル走のギネス世界記録を樹立

ギネスワールドレコーズは、韓国科学技術院のチームが作成した犬のようなロボットを、最速の四足歩行ロボットと認定しました

2024年に探索するべきトップ12の生成 AI モデル

はじめに 近年、人工知能(AI)は非凡な変革を遂げ、創造性の風景を再構築するだけでなく、多様な産業における自動化の新たな基準を設定する先駆的な技術となっています。2024年に入ると、これらの先進的なモデルは画期的な能力、広範な応用、そして世界に紹介する先駆的なイノベーションにより、その地位を固めました。本記事では、今年の主要な生成型AIモデルについて詳しく探求し、彼らの革新的な能力、様々な応用、そして世界にもたらすパイオニア的なイノベーションについて包括的に説明します。 テキスト生成 GPT-4:言語の神童 開発者:OpenAI 能力:GPT-4(Generative Pre-trained Transformer 4)は、文脈の深い理解、微妙な言語生成、およびマルチモーダルな能力(テキストと画像の入力)で知られる最先端の言語モデルです。 応用:コンテンツの作成、チャットボット、コーディング支援など。 イノベーション:GPT-4は、規模、言語理解、多様性の面でこれまでのモデルを上回り、より正確かつ文脈に即した回答を提供します。 この生成型AIモデルにアクセスするには、こちらをクリックしてください。 Mistral:専門家の混合体 開発者:Mistral AI 能力:Mistralは、専門的なサブモデル(エキスパート)に異なるタスクを割り当てることで効率と効果を向上させる、洗練されたAIモデルです。 応用:高度な自然言語処理、パーソナライズされたコンテンツの推薦、金融、医療、テクノロジーなど、様々なドメインでの複雑な問題解決など、幅広い応用があります。 イノベーション:Mistralは、ネットワーク内の最適なエキスパートにタスクを動的に割り当てることによって特徴付けられます。このアプローチにより、専門的で正確かつ文脈に適した回答が可能となり、多面的なAIの課題処理において新たな基準を設定します。 このMistral AIにアクセスするには、こちらをクリックしてください。 Gemini:多面的なミューズ 開発者:Google AI Deepmind…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us