Learn more about Search Results 超伝導体

「研究者が量子コンピューティングのためのトポロジカル超伝導体を進展させる」

「研究者たちは、より堅牢なキュービットを作るために、超伝導体とトポロジカル絶縁体を組み合わせた新しい材料システムを開発しました」

「LK-99超伝導体:突破かもしれない、新たな希望かもしれない」

「専門家たちは、室温超伝導体に関する非凡な主張に反対していますしかし、失敗しても新たな材料研究の道が開ける可能性があります」

「誤っていても、超伝導体の主張は進歩につながる可能性がある」

「専門家たちは、常温・常圧での超伝導体の発見についての主張に慎重であるのは正しいが、その発見を確認するための新たな研究の急増は本物のブレイクスルーにつながる可能性があります」

ジョージア工科大学の論文は、より速く潜在的な超伝導体を特定するAI手法を提案しています

「超電導体は、輸送、エネルギー、その他の産業において、最先端技術において重要な要素ですジョージア工科大学とハノイ科学技術大学の新しい論文は、AIによって駆動された手法を使用して、より迅速に潜在的な超電導体を特定することを提案しています論文によれば、共同チームは...」

ジョージア工科大学のこのAI論文は、より速く信頼性の高い方法で潜在的な超伝導体の新しい候補を特定するための人工知能手法を提案しています

超電導体は、臨界温度以下に冷却されると、電気抵抗を無視することができ、ゼロ抵抗を示します。この素晴らしい超電導体の特性により、エネルギー、交通、最先端のエレクトロニクスなど、さまざまな現実世界の応用が可能になります。過去10年間、高臨界温度超電導体の探索には大きな進展がありました。この論文では、ジョージア工科大学とハノイ科学技術大学(ベトナム)の研究者が、機械学習経路に原子レベルの情報を組み込むための最初のステップとして、新しい従来型(またはBCS)超電導体、特に周囲圧での発見に取り組んでいます。 ゼロ温度での高温超電導の予測は研究者にとって困難な課題でした。研究者は、異なる圧力で計算されたλおよびωlogの1100以上の値を持つ584の原子構造のデータセットを慎重にキュレーションしました。λおよびωlogのためのMLモデルが開発され、マテリアルプロジェクトデータベースの80,000以上のエントリをスクリーニングし、Tcが約10−15KおよびP = 0に等しい可能性のある2つの熱力学的かつ力学的に安定した材料が発見されました(第一原理計算による)。研究者は、原子構造を数値ベクトルに変換するためにmatminerパッケージを使用し、MLアルゴリズムとしてガウスプロセス回帰を使用してこれを達成しました。 研究者は、35の候補に対して超電導特性を予測するためにMLモデルを使用しました。その中で、最も高い予測されたTc値を持つものは6つでした。いくつかは不安定であり、さらなる安定化計算が必要でした。残りの2つの候補、すなわちCrHとCrH2の立方構造の安定性を検証した後、第一原理計算を使用してそれらの超電導特性を計算しました。研究者は、予測結果の正確性を報告された値の2-3%以内と確認するために、ローカル密度近似(LDA)XC機能を使用して追加の計算を実施しました。また、研究者は、これらの超電導体の合成可能性を調査するために、無機結晶構造データベース(ICSD)での起源を追跡しました。これらは過去に実験的に合成されたことがわかり、将来のテストで予測された超電導性が確認されることを期待しています。 将来の研究では、研究者はデータセットを拡大し多様化させ、ディープラーニング技術を使用し、逆設計戦略を統合して実質的に無限の材料を効率的に探索するためのMLアプローチを向上させる予定です。研究者は、高Tc超電導体の発見を容易にするためにアプローチをさらに改善し、実世界のテストと合成のために実験の専門家と協力することを想定しています。 論文をチェックしてください。この研究に関しては、研究者に全てのクレジットがあります。また、最新のAI研究ニュース、クールなAIプロジェクトなどを共有している26k+ ML SubReddit、Discordチャンネル、およびメールニュースレターに参加するのをお忘れなく。 このAI論文は、ジョージア工科大学の研究者が、高速かつ信頼性のある方法で潜在的な超電導体の新たな候補を特定するための人工知能手法を提案しています。この記事はMarkTechPostで最初に掲載されました。

部屋温超伝導体の主張を支持する研究

研究者たちは、今年早期に行われた研究で他の科学者から疑問視されていた重要な測定を検証しました

「人類を800年進化させるAI、GNoMe」

Google DeepMindは、材料の発見に関して人類を800年進化させたAIのGNoMeをリリースしましたしかし、それはどのように動作するのでしょうか?

このAIニュースレターはあなたが必要とするものです#76

今週、私たちはトランスフォーマーや大規模な言語モデル(LLM)の領域を超えた重要なAIの進展に焦点を当てました最近の新しいビデオ生成拡散ベースのモデルの勢いについて…

Google DeepMind(グーグルディープマインド)が「GNoME(グノーム)」を発表:新素材の安定性を予測し、探索の速度と効率を劇的に向上させる新しいディープラーニングツール

無機結晶は、コンピュータチップ、バッテリー、太陽電池など、現代の多くの技術にとって不可欠です。安定した結晶は、細心の注意を払った試験の結果として数ヶ月かけて生まれるものであり、溶解しないため、新たな技術の実現には不可欠です。 研究者たちは、限られた成果しか挙げられなかった高価な試行錯誤の実験を行ってきました。彼らは既存の結晶を修正したり、他の元素の組み合わせを試したりして、新しい結晶構造を探しました。材料プロジェクトなどによって牽引される計算手法のおかげで、過去10年間には28,000以上の新しい材料が見つかりました。これまで、実験的に有効な材料を信頼性の高い予測できるAI技術の能力は大きな制約でした。 ローレンスバークレー国立研究所とGoogle DeepMindの研究者は、Natureに2つの論文を発表し、自律的な材料合成のためのAI予測の可能性を示しました。この研究では、800年分に相当する約2.2百万の結晶が発見されました。彼らの新しいディープラーニングツールである材料探索のためのグラフネットワーク(GNoME)は、新しい材料の安定性を予測し、発見のスピードと効率を大幅に改善しました。GNoMEは、大量の新しい材料の発見と開発におけるAIの約束を具現化しています。世界中のさまざまな研究室で行われた独立した取り組みによって、これらの新しい構造の中から736個が生み出されました。 GNoMEの導入により、技術的に可能な材料の数は2倍に増加しました。その2.2百万の予測のうち、38万個が安定性の高さから実験的な合成の可能性が最も高いとされています。次世代の電気自動車の効率向上に貢献する新しいバッテリーの材料や、スーパーコンピューターを駆動する超伝導体などが、これらの候補材料に含まれます。 GNoMEは最先端のGNNモデルの一つです。GNNの入力データは原子のつながりに類似したグラフで表されるため、新しい結晶材料の発見に適しています。 GNoMEを訓練するために最初に使用された結晶構造と安定性のデータは、Materials Projectを通じて公開されています。トレーニング手法としての「アクティブラーニング」の使用は、GNoMEの効率を大幅に改善しました。研究者たちはGNoMEを使用して新しい結晶候補を生成し、その安定性を予測しました。彼らは進行中のトレーニングサイクル全体でモデルの性能を評価するため、物理学、化学、材料科学の分野で確立された計算手法である密度汎関数理論(DFT)を使用して原子構造を理解し、結晶の安定性を評価するための反復的なチェックを行いました。モデルトレーニングは高品質なトレーニングデータを使用してプロセスに戻されました。 研究結果は、先行の最新モデルによる外部ベンチマークによって指標が設定されている状態から、材料の安定性予測の発見スピードを約50%から80%に向上させたことを示しています。このモデルの効率の向上により、各発見に必要な計算能力が10%未満から80%以上に向上しました。これらの効率の向上は、AI駆動の材料合成のさらなる進展の道を開くものです。 自律型のラボは、Materials Projectの材料を使用し、GNoMEの安定性情報を活用して、41以上の新しい材料を生み出しました。これはAI駆動の材料合成の更なる進展を可能にする道を開いたものです。 GNoMEの予測は科学コミュニティに公開されています。研究者たちはその化合物を解析し、380,000の材料をオンラインデータベースに追加するMaterials Projectに提供します。これらのリソースの助けを借りて、科学コミュニティが無機結晶の研究をさらに追求し、機械学習技術の潜在能力を実験のガイドラインとして実現することを願っています。

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us