Learn more about Search Results 薬品

医薬品探索の革新:機械学習モデルによる可能性のある老化防止化合物の特定と、将来の複雑な疾患治療のための道筋を開拓する

老化やがん、2型糖尿病、骨関節炎、ウイルス感染などの他の病気は、細胞老化をストレス反応として含んでいます。老化細胞のターゲット化された除去は人気を博していますが、その分子標的がよりよく理解される必要があるため、senolyticsはほとんど知られていません。ここでは、科学者たちは、以前に発表されたデータのみで教育された比較的安価な機械学習アルゴリズムを使用して、3つのsenolyticを発見することを説明しています。さまざまなタイプの細胞老化を経験する人間の細胞株で、彼らは複数の化学ライブラリの計算スクリーニングを使用して、ginkgetin、periplocin、およびoleandrinのsenolytic作用を確認しました。これらの化学物質は、よく確立された分析法と同様に効果的であり、oleandrinは、そのターゲットに対して現在のゴールドスタンダードよりも効果的であることを示しています。この方法により、数百倍の薬剤スクリーニング費用が削減され、AIが限られた種類の薬剤スクリーニングデータを最大限に活用できることが示されています。これにより、薬剤探索の初期段階において、新しいデータ駆動型の方法が可能になりました。 senolyticsは、マウスの多くの疾患の症状を緩和することが示されていますが、その除去は、傷口治癒や肝臓機能などのプロセスの障害を引き起こすことも関連しています。有望な発見があるにもかかわらず、senolytic作用を持つ2つの薬剤しか臨床研究で有効性が示されていません。 過去には優れた分析法が開発されていますが、一般的に健康な細胞に有害です。現在、スコットランドのエディンバラ大学の研究者たちは、健康な細胞を傷つけることなく、これらの不良細胞を除去できる化学化合物を特定する革新的なアプローチを開発しました。 彼らは、senolyticの特性を持つ化合物を特定するための機械学習モデルを構築し、それを教育する方法を開発しました。広範囲に承認された薬剤または臨床段階の薬剤を含む2つの既存の化学ライブラリからの化学物質は、学習モデルのトレーニングに使用された各種のソースからのデータと結合されました(アカデミック論文や商業特許など)。機械学習システムにバイアスをかけないために、データセットにはsenolyticおよび非senolytic特性を持つ2,523の物質が含まれています。4,000以上の化合物のデータベースにアルゴリズムを適用した後、21の有望な候補が見つかりました。 テスト中に、ginkgetin、periplocin、およびoleandrinの3つの化合物は、健康な細胞に影響を与えずに老化細胞を除去することが示され、良好な候補物質となりました。結果は、oleandrinが3つの中で最も効果的であることを示しました。これらの3つは、ハーブ療法の一般的な成分です。 oleandrinの源はオウバイ(Nerium oleander)で、心不全や特定の不整脈(不整脈)の治療に使用される心臓薬digoxinと同等の効果を持つ物質です。oleandrinには抗がん、抗炎症、抗HIV、抗菌、抗酸化作用が観察されています。人間におけるoleandrinの治療的窓は狭く、治療用量を超えると高度に毒性があるため、食品添加物や医薬品としての販売や使用は違法です。 Linkedinもoleandrinと同様に、がん、炎症、微生物、神経系に対して有益な効果があり、抗酸化作用や神経保護特性があります。銀杏(Ginkgo biloba)は最も古い生きている樹種であり、その葉と種子は中国で数千年間、漢方薬として使用されています。この木はLinkedinの源です。この木の乾燥した葉を使用して処方箋なしで販売される銀杏エキスが作られています。これは、米国やヨーロッパでトップセラーのハーブサプリメントです。 研究者らは、彼らの結果が、以前の研究で特定されたsenolyticよりも同等またはそれ以上に効果的であることを示していると主張しています。彼らの機械学習ベースのアプローチは、製薬業界での通常のAIの使用とは異なるいくつかの新しい機能を備えています。 第1に、モデルトレーニングに公開されたデータのみを使用するため、内部でのトレーニング化合物の実験的な特性の追加費用は必要ありません。 第2に、senolysisは稀な分子特性であり、文献に報告されているsenolyticは少ないため、機械学習モデルは、通常はこの分野で考慮されるよりもはるかに小さなデータセットでトレーニングされました。この方法の効果は、文献データが通常予想されるよりも多様で限定的であるにもかかわらず、機械学習が文献データを最大限に活用できることを示しています。 第3に、標的非依存モデルトレーニングで薬理学的活性の表現型指標が使用されました。多くの状態は、重要な経済的および社会的負担を負っていますが、それらの状態のためには、少数またはまったくターゲットが知られていないため、表現型薬剤探索は、発見パイプラインを通じて進展する可能性のある化学の出発点の数を拡大する機会を提供します。

「AIにおける親密な役割:ガールフレンドとセラピスト」

この記事は、感情AIの分野についての簡単な概要と、その技術の親密な役割での潜在的な応用についてです

「ウェアラブルデータによるコロナ感染予測」

消費者用ウェアラブルデバイスと医療用ウェアラブルデバイスの収斂は近いのか?

「NVIDIAがゲームチェンジャーとマーケットメーカーへの投資でAI革命を推進する方法」

偉大な企業は物語によって繁栄します。NVIDIAのベンチャーキャピタル担当であるシド・サイディックは、これをよく知っています。 サイディックは、最初の仕事のひとつで、投資家のミーティングからプレゼン資料を運び回り、トレーラーでの仕事中に、ドアが開くと「揺れる」トレーラーで、スタートアップのCEOとマネジメントチームが物語を伝えるのを手伝いました。 そのCEOはJensen Huangであり、スタートアップはNVIDIAでした。 サイディックは、投資家と起業家として働いた経験から、顧客やパートナー、従業員や投資家など、会社の物語を早い段階で共有するために適切な人々を見つけることがどれほど重要かを知っています。 この原則こそが、NVIDIAが次世代イノベーションを支援するために取り組んでいる多面的なアプローチの基盤です。この戦略は、NVIDIAの企業開発責任者であるヴィシャル・バグワティも支持しています。 この取り組みは、今年に入ってこれまでに2ダース以上の投資を果たしました。AIと加速コンピューティングのイノベーションのペースが加速するにつれ、さらに加速しています。 AIエコシステムを支援するNVIDIAの三本の戦略 NVIDIAがエコシステムを投資する方法は3つあります。まず、バグワティが監督するNVIDIAの企業投資によるもの。次に、サイディックが率いる私たちのベンチャーキャピタル部門であるNVenturesによるもの。そして最後に、ベンチャーキャピタルとスタートアップを結び付ける私たちのNVIDIA Inceptionです。 PwCによれば、AIだけで2030年までに世界経済に15兆ドル以上の寄与ができる可能性があります。したがって、現在AIと加速コンピューティングに取り組んでいる場合、NVIDIAは手助けする準備ができています。あらゆる業界の開発者が加速コンピューティングアプリケーションを作成しています。そして、まだ始まったばかりです。 その結果、AIの物語を日々進化させている企業のコレクションが生まれました。Cohere、CoreWeave、Hugging Face、Inflection、Inceptiveなどが含まれます。私たちは彼らと一緒にいます。 「NVIDIAと提携することはゲームチェンジャーです」とMachina LabsのCEOであるEd Mehrは言いました。 「彼らの類まれな専門知識が、私たちのAIとシミュレーション能力を飛躍的に向上させます」。 企業投資:エコシステムの成長 NVIDIAの企業投資部門は戦略的な協力に焦点を当てています。これらのパートナーシップは共同イノベーションを促進し、NVIDIAプラットフォームを強化し、エコシステムを拡大します。2023年の始め以来、14件の投資に関する発表が行われています。 これらのターゲット企業には、チップ間の光接続に特化したAyar Labsや、先進的なAIモデルのハブであるHugging Faceなどがあります。 ポートフォリオには、次世代のエンタープライズソリューションも含まれています。Databricksは、機械学習のための業界をリードするデータプラットフォームを提供しており、CohereはAIを通じた企業自動化を提供しています。他の注目すべき企業にはRecursion、Kore.ai、Utilidataなどがあり、それぞれが薬物発見、会話型AI、スマート電力グリッドのユニークなソリューションを提供しています。 消費者サービスも投資の焦点です。Inflectionは、クリエイティブ表現のためのパーソナルAIを作り上げており、Runwayは生成AIを通じたアートと創造性のプラットフォームとして機能しています。…

「NVIDIA BioNeMoがAWS上での薬剤探索のための生成型AIを可能にする」

主要な製薬会社やテクバイオ企業の研究者や開発者は、Amazon Web Servicesを通じてNVIDIA Claraソフトウェアとサービスを簡単に展開できるようになりました。詳細はこちらをご覧ください。 本日のAWS re:Inventで発表されたこの取り組みにより、AWSクラウドリソースを使用しているヘルスケアおよびライフサイエンスの開発者は、NVIDIAの加速オファリングを柔軟に統合することができるようになります。これにはNVIDIA BioNeMo(創成AIプラットフォーム)も含まれており、AWS上のNVIDIA DGX Cloudに追加され、高性能コンピューティングのためのAWS ParallelClusterクラスタ管理ツールとAmazon SageMakerマシンラーニングサービスを介して現在利用可能です。 北薬やライフサイエンス企業の数千社がAWSを利用しています。彼らは今やBioNeMoにアクセスして、専有データを使用してデジタル生物学の基礎モデルを構築またはカスタマイズし、NVIDIA GPUアクセラレートクラウドサーバーを使用してモデルのトレーニングとデプロイをスケールアップすることが可能です。 Alchemab Therapeutics、Basecamp Research、Character Biosciences、Evozyne、Etcembly、LabGeniusなどのテクバイオイノベーターは、既にBioNeMoを使用して創成AIによる医薬品の探索と開発を行っています。このコラボレーションにより、彼らはバイオモレキュラーデータ上でトレーニングされた創成AIモデルを開発するためにクラウドコンピューティングリソースを迅速にスケールアップするためのより多くの方法を得ることができます。 この発表により、NVIDIAの既存のヘルスケアに特化したオファリングがAWS上で利用可能になります。それには、医療画像処理のためのNVIDIA MONAIおよびジェノミクスの加速のためのNVIDIA Parabricksも含まれています。 AWSでの新機能:NVIDIA BioNeMoが創成AIを推進する BioNeMoは、デジタル生物学のためのドメイン固有のフレームワークであり、事前学習済みの大規模言語モデル(LLM)、データローダー、最適化されたトレーニングレシピを含んでいます。これにより、ターゲットの同定、タンパク質構造の予測、薬剤候補のスクリーニングを加速することで、コンピュータ支援の薬剤探索を推進することができます。 薬剤探索チームは、BioNeMoを使用して専有データを活用し、クラウドベースの高性能コンピューティングクラスター上でモデルを構築または最適化することができます。…

エンタープライズAIプラットフォームは、Amazon Bedrockを利用したものです

さまざまな基礎モデルを使用したAmazon Bedrockの解説と、エンタープライズGen AIプラットフォームの構築方法についてのガイド

現代医学におけるデータサイエンスの役割は何ですか?

イントロダクション AIの台頭により、働くプロフェッショナルの生活を簡素化するために、データに基づいた意思決定にますます頼るようになりました。サプライチェーンの物流や顧客へのローンの承認など、データは鍵を握っています。データサイエンスの力を医療の分野に活用することで、画期的な成果をもたらすことができます。データサイエンティストが現代医学の膨大な量のデータを分析することで、発見や治療につながるパターンを見つけ出すことができます。医療業界を革命化する可能性を秘めているデータサイエンスを医療領域に統合することは、単なる良い考えだけでなく、必要不可欠です。 データ前処理 いくつかの列をクリーンアップしましょう。前のステップで、すべての列が整数であるとわかりました。そのため、まず、年齢、用量、期間を数値に変換します。同様に、データ入力の日付を日時型に変換します。直接変換する代わりに、新しい列を作成します。つまり、Age 列の数値バージョンAge2 列を作成します。 df['Age2'] = pd.to_numeric(df['Age'],errors='coerce')df['Dosage (gram)2'] = pd.to_numeric(df['Dosage (gram)'],errors='coerce')df['Duration (days)2'] = pd.to_numeric(df['Duration (days)'],errors='coerce')df['Date of Data Entry2'] = pd.to_datetime(df['Date of Data…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us