Learn more about Search Results 物流
- You may be interested
- 2023年のトップDNSプライバシーツール
- 「Google CloudがGenerative AIの保護を顧...
- 「データ管理におけるメタデータの役割」
- 初心者におすすめのベストオンラインビジ...
- このAI論文では、ChatGPTに焦点を当て、テ...
- 大規模言語モデルの応用の最先端テクニック
- 「スロープ・トランスフォーマーに出会っ...
- AIを活用したエネルギー効率:今日の電気...
- MITとUC Berkeleyの研究者は、最小限の努...
- PDFの変換:PythonにおけるTransformerを...
- 清華大学研究者がOpenChatを導入:ミック...
- 「AIはデータガバナンスにどのように影響...
- ファイバーオプティックスマートパンツは...
- AI増強ソフトウェアエンジニアリング:知...
- アマゾンの研究者は、深層学習を活用して...
AIアドバイザーと計画ツール:金融、物流、それ以上を変革する
「AIアドバイザーやプランニングツールが金融、物流、医療、教育の根本的な変革を遂げる方法を探索してくださいこれらのAIシステムがどのようにデータ駆動の洞察を提供し、複雑なプロセスを最適化し、未来を形作っているのか学んでください」
デジタルツインは現代の物流を革命化しますこうすればどうなるか
「デジタルツインは物理的な世界と仮想的な世界をつなげることで、物流を変革し、効率性を向上させ、無駄を削減し、そして産業をインダストリー5.0に向けて準備しますこの記事でその利点を探ってみてください」
「MongoDBの時系列コレクションとAmazon SageMaker Canvasで洞察力の向上を加速する」
これは、MongoDBのBabu Srinivasanと共同執筆したゲスト投稿です現在の急速に変化するビジネスの風景では、リアルタイムの予測を行う能力の欠如は、正確かつタイムリーな洞察に重要な依存をする産業にとって、重要な課題をもたらしますさまざまな産業におけるリアルタイムの予測の欠如は、意思決定に重要な影響を与える切迫したビジネスの課題を提起します
スマートな意思決定:AIが従業員の転居計画を向上させる方法
「あなたがふかふかのアームチェアに落ち着いている想像をしてみてください空気中には新しく淹れたコーヒーの香りが漂っていますそれでは、従業員の移転計画について考えてみましょうまるで賑やかな都市の中を進むような感じですあちこちで考慮すべき事柄や物流の複雑さが溢れていますしかし、ここで順調になるのはAIが登場するときです... スマートな意思決定 AIが従業員の移転計画をどのように強化するのか 詳細を読む」
『中にFunSearch:GoogleのDeepMindの新しいLLM、新しい数学とコンピューターサイエンスのアルゴリズムを見つけることができる』
新しい科学の発見は、AIモデルにとって最も完全なチューリングテストかもしれません新しい科学の方法には、多くの分野からの知識を組み合わせた複雑な推論スキルや、常に実験を行う必要があります...
「NVIDIAがゲームチェンジャーとマーケットメーカーへの投資でAI革命を推進する方法」
偉大な企業は物語によって繁栄します。NVIDIAのベンチャーキャピタル担当であるシド・サイディックは、これをよく知っています。 サイディックは、最初の仕事のひとつで、投資家のミーティングからプレゼン資料を運び回り、トレーラーでの仕事中に、ドアが開くと「揺れる」トレーラーで、スタートアップのCEOとマネジメントチームが物語を伝えるのを手伝いました。 そのCEOはJensen Huangであり、スタートアップはNVIDIAでした。 サイディックは、投資家と起業家として働いた経験から、顧客やパートナー、従業員や投資家など、会社の物語を早い段階で共有するために適切な人々を見つけることがどれほど重要かを知っています。 この原則こそが、NVIDIAが次世代イノベーションを支援するために取り組んでいる多面的なアプローチの基盤です。この戦略は、NVIDIAの企業開発責任者であるヴィシャル・バグワティも支持しています。 この取り組みは、今年に入ってこれまでに2ダース以上の投資を果たしました。AIと加速コンピューティングのイノベーションのペースが加速するにつれ、さらに加速しています。 AIエコシステムを支援するNVIDIAの三本の戦略 NVIDIAがエコシステムを投資する方法は3つあります。まず、バグワティが監督するNVIDIAの企業投資によるもの。次に、サイディックが率いる私たちのベンチャーキャピタル部門であるNVenturesによるもの。そして最後に、ベンチャーキャピタルとスタートアップを結び付ける私たちのNVIDIA Inceptionです。 PwCによれば、AIだけで2030年までに世界経済に15兆ドル以上の寄与ができる可能性があります。したがって、現在AIと加速コンピューティングに取り組んでいる場合、NVIDIAは手助けする準備ができています。あらゆる業界の開発者が加速コンピューティングアプリケーションを作成しています。そして、まだ始まったばかりです。 その結果、AIの物語を日々進化させている企業のコレクションが生まれました。Cohere、CoreWeave、Hugging Face、Inflection、Inceptiveなどが含まれます。私たちは彼らと一緒にいます。 「NVIDIAと提携することはゲームチェンジャーです」とMachina LabsのCEOであるEd Mehrは言いました。 「彼らの類まれな専門知識が、私たちのAIとシミュレーション能力を飛躍的に向上させます」。 企業投資:エコシステムの成長 NVIDIAの企業投資部門は戦略的な協力に焦点を当てています。これらのパートナーシップは共同イノベーションを促進し、NVIDIAプラットフォームを強化し、エコシステムを拡大します。2023年の始め以来、14件の投資に関する発表が行われています。 これらのターゲット企業には、チップ間の光接続に特化したAyar Labsや、先進的なAIモデルのハブであるHugging Faceなどがあります。 ポートフォリオには、次世代のエンタープライズソリューションも含まれています。Databricksは、機械学習のための業界をリードするデータプラットフォームを提供しており、CohereはAIを通じた企業自動化を提供しています。他の注目すべき企業にはRecursion、Kore.ai、Utilidataなどがあり、それぞれが薬物発見、会話型AI、スマート電力グリッドのユニークなソリューションを提供しています。 消費者サービスも投資の焦点です。Inflectionは、クリエイティブ表現のためのパーソナルAIを作り上げており、Runwayは生成AIを通じたアートと創造性のプラットフォームとして機能しています。…
「ビジネスにスピーチAIを導入する際に考慮すべき5つのポイント」
「退屈な仕事が働く時間の60〜70%を消し去るという世界を想像してくださいMcKinseyの報告によると、自然言語理解の進化により、生成AIがこの夢をすぐに現実化する可能性がありますそれには驚くべきことではありません伝統的な業界でも、ますます多くの企業がこれに取り組んでいるからです...」
MITとETH Zurichの研究者たちが、動的なセパレータの選択を通じて、拡張された混合整数線形計画法(MILP)の解決を目的とした機械学習技術を開発しました
複雑な最適化問題に効率的に取り組むことは、グローバルパッケージルーティングから電力グリッド管理まで、持続的な課題です。伝統的な方法である混合整数線形計画(MILP)ソルバーは、複雑な問題を分解するための重要なツールとして使用されてきました。しかし、計算の集中度には課題があり、しばしば最適でない解決策や長時間の解決につながります。これらの制約に対応するため、MITとETHチューリッヒの研究者は、革新的なデータ駆動型機械学習技術を開発し、複雑な物流上の課題へのアプローチと解決方法を革新するという約束を果たしました。 最適化が重要な物流業界では、課題は困難です。サンタクロースが魔法のソリとトナカイを持っていたとしても、FedExのような企業は効率的に休暇のパッケージを配送する迷路と戦っています。企業が使用するソフトウェアの骨子であるMILPソルバーは、多大な最適化問題を分解するための分割統治アプローチを採用しています。しかし、これらの問題の複雑さは、解決にかかる時間が数時間、または数日に及ぶことがしばしばです。時間的な制約から、企業はソルバーの途中で解決を中断し、時間制約による最適でない解決策に妥協することがしばしばあります。 研究チームは、解決時間の長さに重要な中間ステップをMILPソルバーで特定しました。このステップはセパレータ管理と呼ばれるもので、すべてのソルバーの中核的な要素ですが、しばしば見過ごされがちです。セパレータ管理は、セパレータアルゴリズムの理想的な組み合わせを特定する負担の多い問題です。これに気付いた研究者たちは、MILPソルバーにデータ駆動型アプローチを取り込むことを目指しました。 既存のMILPソルバーは、一般的なアルゴリズムと技術を使用して広範な解の空間をナビゲートしています。しかし、MITとETHチューリッヒのチームは、セパレータ検索空間を合理化するためのフィルタリングメカニズムを導入しました。彼らは約20のオプションに抑え込まれた圧倒的な130,000の潜在的な組み合わせを減らしました。このフィルタリングメカニズムは、限界効果減少の原則に基づいており、最も利益が得られるのはごく少数のアルゴリズムであると主張しています。 この革新的な飛躍は、機械学習をMILPソルバーフレームワークに統合することにあります。研究者は、問題固有のデータセットでトレーニングされた機械学習モデルを使用して、狭められたオプションから最適なアルゴリズムの組み合わせを選択しました。事前定義された設定を持つ従来のソルバーとは異なり、このデータ駆動型アプローチにより、企業は自社のデータを活用して一般的なMILPソルバーを特定の問題に適合させることができます。たとえば、FedExのようにルーティング問題を定期的に解決する企業は、過去の経験から実際のデータを使用してソリューションを洗練させることができます。 機械学習モデルは、コンテキストベースのバンディット、リインフォースメントラーニングの形態で動作します。この反復学習プロセスでは、潜在的なソリューションを選択し、その効果についてフィードバックを受け取り、後続の反復で洗練されます。結果として、MILPソルバーの劇的な高速化が実現し、正確性が損なわれることなく、30%から驚異的な70%までの範囲で達成されます。 総括すると、MITとETHチューリッヒの共同研究は、最適化分野での重要なブレイクスルーを成し遂げました。古典的なMILPソルバーと機械学習を結びつけることにより、研究チームは複雑な物流上の課題に取り組むための新たな道を開拓しました。解決時間を短縮しつつ精度を維持する能力は、MILPソルバーに実用的な優位性をもたらし、実世界のシナリオにより適用されるようになります。この研究は最適化の領域に貢献し、複雑な実世界の問題の解決に機械学習の広範な統合の舞台を提供しています。
2024年の予測17:RAG to RichesからBeatlemaniaとNational Treasuresへ
メリアム・ウェブスターの前に譲れ:今年、企業は年間のワードに追加するための多くの候補を見つけました。「生成的AI」と「生成的事前学習変換器」の後には、「大規模言語モデル」と「検索増強生成」(RAG)のような用語が続き、さまざまな産業が変革的な新技術に注目しました。 生成的AIは今年の初めにはまだ注目されていなかったが、終わりには大きなインパクトを与えました。多くの企業が、テキスト、音声、動画を取り込み、生産性、イノベーション、創造性を革新する新しいコンテンツを生み出す能力を利用するために全力で取り組んでいます。 企業はこのトレンドに乗っています。OpenAIのChatGPTなどのディープラーニングアルゴリズムは、企業のデータをさらにトレーニングすることで、63のビジネスユースケース全体で年間2.6兆ドルから4.4兆ドル相当の価値を生み出すことができると、マッキンゼー・アンド・カンパニーによって評価されています。 しかし、大量の内部データを管理することは、AIの拡大における最大の障害とされてきました。NVIDIAのAIの専門家の一部は、2024年は友達との電話に関するすべてだと予測しており、クラウドサービスプロバイダーやデータストレージおよび分析会社など、大規模データを効率的に処理し、調整し、展開するノウハウを持つ企業や個人とのパートナーシップや協力関係を構築することが重要だと述べています。 大規模言語モデルがその中心にあります。NVIDIAの専門家によると、LLM研究の進展は、ますますビジネスや企業向けのアプリケーションに適用されるようになります。RAG、自律型インテリジェントエージェント、マルチモーダルインタラクションのようなAIの機能は、ほぼすべてのプラットフォームを介してよりアクセス可能で容易に展開できるようになります。 NVIDIAの専門家の予想を聞いてください: MANUVIR DASエンタープライズコンピューティング部門副社長 一揃いは全てに合わない:カスタマイズが企業にやってきます。企業は1つまたは2つの生成的AIアプリケーションを持つのではなく、さまざまな部門に適した独自のデータを使用した何百ものカスタマイズされたアプリケーションを持つことになるでしょう。 これらのカスタムLLMは、稼働中にデータソースを生成的AIモデルに接続するためのRAGの機能を備え、より正確で明確な応答を提供します。Amdocs、Dropbox、Genentech、SAP、ServiceNow、Snowflakeなどのリーディングカンパニーは、既にRAGとLLMを使用した新しい生成的AIサービスを構築しています。 オープンソースソフトウェアが先頭を走っています:オープンソースの事前学習モデルのおかげで、特定のドメインの課題を解決する生成的AIアプリケーションがビジネスの運用戦略の一部になるでしょう。 企業がこれらの先行モデルをプライベートまたはリアルタイムのデータと組み合わせると、組織全体で加速された生産性とコストの利益を見ることができるようになります。クラウドベースのコンピューティングやAIモデルファウンドリーサービスから、データセンターやエッジ、デスクトップまで、ほぼすべてのプラットフォームでAIコンピューティングとソフトウェアがよりアクセス可能になります。 棚卸しのAIとマイクロサービス:生成的AIは、開発者が複雑なアプリケーションを構築しやすくするアプリケーションプログラミングインターフェース(API)エンドポイントの採用を促しています。 2024年には、ソフトウェア開発キットとAPIが進化し、開発者がRAGなどのAIマイクロサービスを利用してオフシェルフのAIモデルをカスタマイズすることができるようになります。これにより、企業は最新のビジネス情報にアクセスできる知能を持つアシスタントや要約ツールを使用して、AIによる生産性の完全な可能性を引き出すことができます。 開発者は、これらのAPIエンドポイントをアプリケーションに直接埋め込むことができ、モデルとフレームワークをサポートするために必要なインフラストラクチャの維持について心配する必要はありません。エンドユーザーは、自分のニーズに適応するより直感的でレスポンシブなアプリケーションを体験することができます。 IAN BUCKハイパースケールとHPC部門副社長 国家的な財産:人工知能は新しい宇宙競争となり、すべての国が研究と科学の重要な進展を推進し、GDPを向上させるために自国の卓越の中心を作ろうとしています。 数百個のアクセラレートされた計算ノードを使用するだけで、国は高効率で大規模なパフォーマンスを発揮するエクサスケールAIスーパーコンピュータを迅速に構築することができます。政府資金による創発型AI卓越センターは、新しい雇用を創出し、次世代の科学者、研究者、エンジニアを育成するためにより強力な大学のプログラムを構築することで、国の経済成長を後押しします。 飛躍的な進歩:企業リーダーは、二つの主要な要因に基づいて量子コンピューティングの研究イニシアチブを立ち上げます。まず、従来のAIスーパーコンピュータを使用して量子プロセッサをシミュレートする能力、そして、ハイブリッドクラシカル量子コンピューティングのためのオープンかつ統一された開発プラットフォームの利用が可能になることです。これにより、開発者は、量子アルゴリズムを構築するためにカスタムで特殊な知識を必要とせず、標準のプログラミング言語を使用することができます。 かつてはコンピュータ科学の奇妙なニッチと考えられていた量子コンピューティングの探求は、素材科学、製薬研究、サブアトミック物理学、物流などの分野で急速な進歩を追求する企業がアカデミアや国立研究所に加わることで、より一般的なものになるでしょう。 KARI BRISKIAIソフトウェア担当副社長 RAGから富へ:2024年、企業がこれらのAIフレームワークを採用するにつれ、再試行補完生成はさらに注目されるでしょう。…
シンガポールがAIワークフォースを3倍に増やす予定
シンガポールは、人工知能の分野に目を向けています。国家AI戦略(NAIS)2.0の発表により、この都市国家は次の3〜5年でAIの労働力を15,000人にまで増やす計画です。この野心的なイニシアチブは、シンガポールの技術的な風景だけでなく、社会の構造も再構築するものとなるでしょう。 見習いによる人材育成 才能のプールを強化するために、シンガポール政府はすでに300人以上の卒業生を輩出した見習いプログラムを改革することを目指しています。多様な産業のAIプロダクト開発チームとの強化された協力により、参加者には実世界の経験が提供されます。この多角的なアプローチは、クリエイターとユーザーのギャップを埋めるダイナミックなエコシステムを育成することを目指しています。 戦略的なAIの統合 NAIS 2.0では、すべての企業でのAIの導入を奨励することに重要な重点を置いています。産業変革マップと職業変革マップによってガイドされるターゲットトレーニングプログラムは、労働力のスキルアップに不可欠です。その目標は、製造業、金融サービス、輸送、物流、バイオ医学などのセクターにAIをシームレスに統合することです。 未開のAI領域 副首相のローレンス・ウォンは、発表会で変革の道程について強調しました。人間の認知能力に似た機械によって特徴づけられるAIの進化する風景は、包括的な国家戦略を要求しています。フラッグシッププロジェクトからシステムアプローチへのシフトにより、AIは単なる機会ではなく、シンガポールの未来にとって必要不可欠なものとして位置付けられています。 倫理的なAIガバナンス AIの倫理的な影響についての懸念に対処するため、シンガポールの規制アプローチはイノベーションの促進とセーフガードの実施の微妙なバランスを求めています。更新されたモデルガバナンスフレームワークとAI Verifyツールキットは、責任ある開発を確保することを目指しています。ウォン副首相は、定期的なレビューと調整が行われる「目的に適した」規制環境の必要性を強調しました。 私たちの意見 シンガポールのグローバルリーダーシップへのコミットメントは、変革的な技術の課題と機会に対する積極的なアプローチを反映しています。この国がさまざまな領域で優れた研究、基盤整備、国際パートナーシップを追求することは、先例を打ち立てています。シンガポールカンファレンスの開催はその意義があり、全世界での協力とアイデア交換の場を提供します。シンガポールの国家AI戦略2.0は、単なるアップデート以上のものです。この国はAIの力をどのように認識し活用するかを再定義しています。この未開の領域に進む中、シンガポールは世界に招待し、関与することを求めています。この変革的な旅は、グローバルなAIの未来を形作っています。
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.