Learn more about Search Results 指示

NTUの研究者が「高級なビデオ」を発表:テキスト指示による潜在的拡散技術による高画質動画の超解像度化

ビデオのスーパーレゾリューションは、低解像度のビデオの品質を高い忠実度に引き上げることを目指し、現実世界のシナリオでよく見られる多様で入り組んだ劣化に対処することの困難さに直面しています。合成または特定のカメラ関連の劣化に焦点を当てた以前のものとは異なり、複数の不明な要素(ダウンサンプリング、ノイズ、ぼやけ、ちらつき、およびビデオ圧縮など)により複雑さが生じます。最近のCNNベースのモデルはこれらの問題を緩和するという約束を示してきましたが、限られた生成能力により現実的なテクスチャの生成には不十分であり、過度に滑らかになります。この研究は拡散モデルを活用してこれらの制限に取り組み、ビデオのスーパーレゾリューションを向上させることに焦点を当てています。 現実世界のビデオエンハンスメントの複雑さは、多様な多面的な劣化に対する従来の手法を超える解決策を求めています。CNNベースのモデルはいくつかの劣化形式を軽減する能力を示していますが、その制約は現実的なテクスチャの生成にあり、しばしば過度に滑らかな出力を生み出します。拡散モデルは高品質の画像やビデオを生成する素晴らしい能力を発揮する光明の存在となっています。ただし、拡散サンプリングにおける固有のランダム性のため、ビデオのスーパーレゾリューションへのこれらのモデルの適応は、低レベルのテクスチャにおける時空的な不連続性とちらつきを引き起こす大きな課題となっています。 これらの課題に対処するため、NTUの研究者はこの研究で、潜在的な拡散フレームワーク内で局所的なグローバルの時空的な一貫性戦略を採用しています。局所的なレベルでは、事前学習されたアップスケーリングモデルが追加の時空間レイヤーで微調整され、3D畳み込みと時空間注意レイヤーを統合します。この微調整により、局所的なシーケンスの構造安定性が大幅に向上し、テクスチャのちらつきなどの問題が軽減されます。同時に、新しいフローガイド再帰的な潜在伝播モジュールがグローバルなレベルで動作し、推論中にフレームごとの伝播と潜在的な融合を行うことで、より長いビデオ全体の安定性を確保します。 図1: AI生成と現実世界のビデオのスーパーレゾリューションの比較。提案されたUpscale-A-Videoは優れたアップスケーリング性能を示しています。適切なテクストキューを用いて、より視覚的なリアリズムとより細かいディテールを実現します。 この研究では、テクストプロンプトを導入してテクスチャの作成を誘導し、モデルがより現実的で高品質な詳細を生成することができるようにしています。さらに、入力にノイズを注入することで、モデルの頑健性を重いまたは未知の劣化に対して強化し、復元と生成のバランスを制御することができます。ノイズのレベルが低い場合は復元能力が優先され、高いレベルではより洗練された詳細の生成が促され、忠実度と品質のトレードオフを実現します。 主な貢献は、潜在的な拡散フレームワーク内での現実世界のビデオのスーパーレゾリューションに対する堅牢なアプローチを考案することであり、時空的な一貫性メカニズムとノイズレベルおよびテキストプロンプトの革新的な制御の統合により、ベンチマークでの最先端のパフォーマンスを実現し、顕著な視覚的なリアリズムと時間的な結束力を示しています。

「CMUの研究者たちがRoboToolを公開:自然言語の指示を受け取り、シミュレーション環境と実世界のロボットを制御するための実行可能なコードを出力するAIシステム」

カーネギーメロン大学とGoogle DeepMindの研究者が協力して、RoboToolと呼ばれるシステムを開発しました。このシステムは大規模な言語モデル(LLM)を活用して、ロボットに物理的な制約や長期的な計画に関わるタスクで創造的にツールを使用させる能力を与えます。このシステムは以下の4つの主要なコンポーネントで構成されています: 自然言語の解釈を行うアナライザー 戦略を生成するプランナー パラメータを計算する計算機 計画を実行可能なPythonコードに変換するコーダー GPT-4を使用したRoboToolは、従来のタスクとモーションプランニングの方法に比べて、複雑なロボティクスタスクに対する柔軟で効率的かつユーザーフレンドリーなソリューションを提供することを目指しています。 この研究は、ロボットがツールを創造的に使用するという課題に取り組んでおり、動物がツールを使用する際の知性に類似したものです。これは、ロボットがツールを単に予定された目的のために使用するだけでなく、柔軟な解決策を提供するために創造的かつ非伝統的な方法でツールを使用することの重要性を強調しています。従来のタスクとモーションプランニング(TAMP)の方法は、暗黙の制約を伴うタスクの処理において見直す必要があり、計算コストも高くなる傾向があります。大規模な言語モデル(LLM)は、ロボティクスタスクに有益な知識をエンコードすることで有望な成果を示しています。 この研究は、ツールの選択、順次ツールの使用、および製造など、創造的なツール使用能力を評価するためのベンチマークを導入しています。提案されたRoboToolは、シミュレートおよび実世界の環境で評価され、創造的なツール使用がなければ困難なタスクの処理能力を実証しています。このシステムの成功率は、ベースラインの方法を上回り、暗黙的な制約を伴う複雑な長期的な計画タスクの解決における効果を示しています。 評価は、以下の3種類のエラーを計算することで行われました: ツール使用エラーは、正しいツールが使用されているかを示します 論理エラーは、ツールの誤った順序での使用や提供された制約の無視などの計画エラーに焦点を当てます 数値エラーは、誤った目標位置の計算や間違ったオフセットの追加などの計算エラーを含みます アナライザーを使用しないRoboToolは、大きなツール使用エラーがあり、計算機を使用しないRoboToolは、ロボツールと比べて大きな数値エラーがあります。これは、それぞれの役割がモデルにおいて果たしていることを示しています。 まとめると、言語モデルを活用したRoboToolは、暗黙的な物理的な制約を持つ長期的な計画問題を解決する能力を持つ創造的なロボットツールユーザーです。このシステムのキー概念の識別、創造的な計画の生成、パラメータの計算、実行可能なコードの生成は、創造的なツール使用が必要な複雑なロボティクスタスクの処理に貢献しています。

NexusRaven-V2をご紹介します:13B LLMは、ゼロショット機能呼び出しでGPT-4を凌駕し、ナチュラルランゲージの指示を実行可能なコードに変換する能力を持っています

<img alt=”” src=”https://ai.miximages.com/www.marktechpost.com/wp-content/uploads/2023/12/Screenshot-2023-12-12-at-12.42.47-AM-1024×623.png”/><img alt=”” src=”https://ai.miximages.com/www.marktechpost.com/wp-content/uploads/2023/12/Screenshot-2023-12-12-at-12.42.47-AM-150×150.png”/><p>LLMsは、コード関連のデータセットで微調整することができ、関数呼び出しを含むコードスニペットを生成することができます。これらのモデルは、コンテキストやプロンプトによって提供された入力に基づいて、関数呼び出しを含むコードを提案または生成することができます。言語モデルは、コードに関連するクエリや指示の自然言語理解に使用することができます。開発者は質問や説明を入力し、モデルはそれらを解釈して関連する関数呼び出しやコードセグメントを提供することができます。</p><p>LLMsは、提供されたコンテキストや部分的なコードに基づいて、関数呼び出しを提案したり関連する関数を提案したりすることによって、コード補完を支援することができます。これにより、開発者はより迅速かつ正確にコードを記述することができます。LLMsは、特定のタスクや問題の説明に基づいて、適切なAPIや手順をガイドすることで、開発者がコード内で呼び出すべき適切な関数を見つけるのを支援することができます。LLMsを開発環境に統合することで、開発者に対して関数呼び出し、パラメータのタイプ、または潜在的なエラーに対してリアルタイムのサポートを提供することができます。</p><p>Nexusflowの研究者は、オープンソースのLLMモデル、<strong><a href=”https://www.voagi.com/nexusravenv2-outperforms-gpt4-in-nexusflows-latest-battle.html”>NexusRaven-V2</a></strong>を提案しています。これは自然言語の指示を実行可能なコードに変換してツールを使用することができます。OpenAIアシスタントAPIは、コパイロットとエージェントがソフトウェアツールを使用するための鍵として機能します。NexusRaven-V2は、コパイロットとエージェントのオープンソースモデルを進化させることを目指しています。</p><p>NexusRaven-V2は、ネストや複合関数を使用する人間が生成したユースケースで、関数呼び出しの成功率でGPT-4を最大7%上回っています。NexusRavenはMetaのCodeLlama-13 Bインストラクションにチューニングされた指示です。Nexusflowのパイプラインを使用して、プロプライエタリなLLMを使用せずにオープンコードのコーポラから情報源を提供しています。コミュニティ開発者と企業の両方に対して商業許容です。</p><p>当社の人間によるベンチマークで、NexusRaven-V2は、関数呼び出しの成功率において、最新のGPT-4モデルよりも平均で4%高い成功率を示すことが観察されました。なお、ネストや複合関数呼び出しを必要とする4つの厳しいタスクでは、NexusRaven-V2の方がGPT-4よりも堅牢性が高いと言えます。また、開発者の関数の説明におけるバリエーションを処理する際にも、NexusRaven-V2はGPT-4よりも優れた性能を発揮します。</p><p>チームは、ユーザーがメインストリームのプロプライエタリな関数呼び出しAPIをシームレスにNexusRaven-V2で置き換えることができるオープンソースのユーティリティアーティファクトをリリースしました。また、オンラインデモやコラボノートブックを提供してオンボーディングと統合デモを行っています。彼らは評価ベンチマーク<a href=”https://www.voagi.com/call-all-functions.html”>Nexus-Function-Calling</a>をオープンソース化し、Huggingfaceの<a href=”https://www.voagi.com/create-and-analyze-advanced-machine-learning-models-using-the-sagemaker-canvas-model-leaderboard.html”>リーダーボード</a>を確立しています。このリーダーボードには、さまざまな関数呼び出しのユースケースと難易度をカバーした、実生活で人間が選定した関数呼び出しの例が多数収録されています。</p><p>将来的には、関数呼び出しのLLMは教育現場において、学習者がリアルタイムのサポートを受けながら関数の呼び出し方を正しく学び、プログラミングの概念の理解を促進することができるでしょう。</p>

このAI研究は、CoDi-2を紹介します:インターリーブされた指示処理とマルチモーダルな出力生成の風景を変える画期的なマルチモーダル大規模言語モデルです

研究者たちは、UCバークレー、Microsoft Azure AI、Zoom、UNC-Chapel Hillによって開発されたCoDi-2 Multimodal Large Language Model(MLLM)を利用して、複雑な多モーダル指示の生成と理解の問題に取り組みました。さらに、被駆動型画像生成、ビジョン変換、オーディオ編集のタスクにおいても優れた性能を発揮します。このモデルは包括的な多モーダル基盤の確立において、重要な突破口となります。 CoDi-2は、前身であるCoDiの機能を拡張し、被駆動型画像生成やオーディオ編集といったタスクで優れた性能を発揮します。このモデルのアーキテクチャには、オーディオとビジョンの入力に対するエンコーダとデコーダが含まれています。トレーニングでは、拡散モデルからのピクセル損失とトークン損失が組み合わされます。CoDi-2は、スタイルの適応や被駆動型生成などのタスクにおいて、顕著なゼロショットおよびフューショットの能力を示します。 CoDi-2は、多モーダル生成における課題に取り組み、ゼロショットの詳細制御、モダリティを交互にする指示の追従、およびマルチラウンドの多モーダルチャットに重点を置いています。LLMをその脳として利用することで、CoDi-2はエンコードおよび生成の過程でモダリティを言語と整合させることができます。このアプローチにより、モデルは複雑な指示を理解し、一貫性のある多モーダル出力を生成することができます。 CoDi-2のアーキテクチャには、オーディオとビジョンの入力に対するエンコーダとデコーダが含まれており、多モーダルの大規模言語モデル内に組み込まれています。さまざまな生成データセットでトレーニングされたCoDi-2は、トークン損失に加えて拡散モデルからのピクセル損失を利用しています。優れたゼロショットの能力を示し、被駆動型画像生成、ビジョン変換、オーディオ編集のタスクにおいて、競争力のあるパフォーマンスと新しい未知のタスクに対する一般化能力を発揮します。 CoDi-2は、多文脈での学習、推論、任意のモダリティ生成を通じてゼロショットの能力を広範に持ちます。評価結果は、高い競争力のあるゼロショットのパフォーマンスと新しい未知のタスクへの堅牢な一般化を示しています。CoDi-2は、オーディオ編集のタスクで優れたパフォーマンスを達成し、すべてのメトリクスにおいて最低スコアとなる要素の追加、削除、および置換によるパフォーマンスを示します。高品質な多モーダル生成を進化させるために、コンテキストの年齢、概念学習、編集、および詳細な制御の重要性を強調します。 CoDi-2は、複雑な指示の追従、コンテキストでの学習、推論、チャット、および異なる入力-出力モードでの編集など、さまざまなタスクで優れた能力を持つ先進的なAIシステムです。異なるスタイルに適応し、さまざまな主題に基づいたコンテンツを生成し、オーディオを操作する能力においても、多モーダル基盤モデリングにおける重要な突破口となります。CoDi-2は、訓練されていないタスクでも多くのタスクを処理できる包括的なシステムの作成に向けた印象的な探索です。 CoDi-2の将来の展開では、コンテキストでの学習の改善、対話能力の拡張、および追加のモダリティのサポートにより、多モーダルの生成能力を向上させることを計画しています。拡散モデルなどの技術を使用して、画像とオーディオの品質を向上させることも目指しています。将来の研究では、CoDi-2を他のモデルと評価・比較し、その強みと制限を理解することも含まれるでしょう。

テンセントAI研究所では、GPT4Videoを紹介していますこれは統合マルチモーダル大規模言語モデルであり、指示に従った理解と安全意識のある生成を目指しています

テンセントAIラボとシドニー大学の研究者たちによって、ビデオの理解と生成シナリオの問題がGPT4Videoで解決されました。この統一されたマルチモデルのフレームワークは、ビデオの理解と生成の能力を持つLLM(言語・ロボットマルチモデル)をサポートしています。 GPT4Videoは、安定した拡散生成モデルに統合された指示に従うアプローチを開発し、効果的かつ安全にビデオの生成シナリオを処理します。 先行研究では、視覚入力とテキスト出力を処理する多モーダル言語モデルが開発されています。例えば、いくつかの研究者は、複数のモダリティ用の共有埋め込み空間の学習に焦点を当てています。そして、マルチモーダル言語モデルが指示に従うことができるようにすることに関心が集まっており、最初のマルチモーダルな指示の調整基準データセットであるMultiInstructが紹介されました。LLMは自然言語処理を革新しました。テキストから画像/ビデオの生成は、さまざまな技術を用いて探究されてきました。LLMの安全性への懸念も、最近の研究で取り組まれています。 GPT4Videoフレームワークは、LLMに高度なビデオの理解と生成能力を与えるために設計された万能で多様なシステムです。現在のMLLM(マルチモーダル言語モデル)の限界に応えるために、GPT4Videoはマルチモーダルな出力を生成する能力において不足しているにもかかわらず、マルチモーダルな入力を処理する能力に優れています。GPT4Videoは、LLMが解釈するだけでなく、豊かなマルチモーダルコンテンツを生成することができるようにします。 GPT4Videoのアーキテクチャは、3つの重要なコンポーネントで構成されています: ビデオ理解モジュールは、ビデオの特徴抽出器とビデオの要約器を使用して、ビデオ情報をLLMの単語埋め込み空間とエンコードし整列させます。 LLM本体は、LLaMAの構造を活用し、元の事前学習済みパラメータを維持しながら、Parameter-Efficient Fine Tuning(PEFT)手法であるLoRAを用いています。 ビデオ生成パートは、データセットに従って緻密に構築された指示によって、LLMにプロンプトを生成するように条件付けます。 GPT4Videoは、ビデオの理解と生成において優れた能力を示し、ビデオの質問回答タスクでValleyを11.8%上回り、テキストからビデオへの生成タスクでNExt-GPTを2.3%上回りました。このモデルは、追加のトレーニングパラメータなしでLLMにビデオ生成の機能を備え、さまざまなモデルと連携してビデオ生成に利用することができます。 結論として、GPT4Videoは、言語とビジョンモデルを高度なビデオの理解と生成機能で拡張する強力なフレームワークです。専門的にビデオのモダリティを扱う一方、将来のアップデートでは画像や音声など、他のモダリティにも拡大する予定です。

バイトダンス(ByteDance)は、画像やテキストの指示を組み合わせた、拡散モデルに基づく画期的なビデオ生成手法「PixelDance」を紹介しました

ByteDance Researchの研究チームがPixelDanceを紹介しました。PixelDanceはテキストと画像の指示を利用して、多様かつ複雑な動きを持つビデオを作成するための手法です。この手法により、研究者は複雑なシーンやアクションを特長とするビデオを合成し、ビデオ生成の分野で新たな基準を設定しています。PixelDanceは、制限された動きしかない既存のモデルを超越して、複雑な設定とアクティビティを持つビデオを合成することに優れています。このモデルは、さまざまな画像の指示を取り入れ、時空的に一貫したビデオクリップを組み合わせて合成写真を生成します。 従来のシーンに特化したテキストからビデオを生成するモデルとは異なり、PixelDanceは初めと最後のフレームの画像指示を利用してビデオの複雑さを高め、より長いクリップを生成することができます。この革新は、特にドメイン外のコンテンツに見られる運動やディテールの制限を克服しています。画像指示の利点を強調することにより、PixelDanceは複雑なシーン、ダイナミックなアクション、複雑なカメラの動きを持つ高ダイナミックなビデオを生成するソリューションとして確立されています。 PixelDanceのアーキテクチャは、拡散モデルと変分オートエンコーダを組み合わせて、画像指示を入力空間にエンコードします。トレーニングと推論の技術は、公開されているビデオデータを利用してビデオのダイナミクスを学習します。PixelDanceは、セマンティックマップ、スケッチ、ポーズ、バウンディングボックスなど、さまざまな画像指示に拡張されます。質的分析は、テキスト、最初のフレーム、最後のフレームの指示が生成されたビデオの品質に与える影響を評価します。 PixelDanceは、MSR-VTTとUCF-101のデータセットに基づいて、FVDおよびCLIPSIMの指標に基づいて、これまでのモデルを上回る結果を示しました。UCF-101での抜粋研究では、PixelDanceのテキストと最後のフレームの指示のようなコンポーネントの連続クリップ生成への効果を示しています。この手法は、高品質なビデオデータのトレーニング、ドメイン固有の微調整、モデルのスケーリングなど、改善の道筋を示唆しています。PixelDanceはゼロショットのビデオ編集を実現し、それを画像編集のタスクに変換します。MSR-VTTおよびUCF-101のデータセットで、テキストプロンプトと一致する高品質で複雑なビデオを生成する印象的な定量評価結果を達成しています。 PixelDanceは、複雑なシーンとアクションを持つ高品質なビデオを合成することに優れており、最先端のモデルを超越しています。テキストプロンプトとの関連性により、ビデオ生成の進化の可能性を見せています。ドメイン固有の微調整やモデルのスケーリングなどの改善点が明確にされています。PixelDanceはゼロショットのビデオ編集を導入し、それを画像編集のタスクに変換して、時空的に一貫したビデオを安定して生成します。定量的な評価によって、テキストプロンプトに基づいて高品質で複雑なビデオを生成する能力が確認されています。 PixelDanceは、明示的な画像とテキストの指示に依存するため、未知のシナリオへの一般化が制限される可能性があります。評価は主に定量的な指標に焦点を当てており、より主観的な品質評価が必要です。トレーニングデータソースの影響や潜在的なバイアスについては、十分に探求されていません。スケーラビリティ、計算要件、効率性についても十分に議論される必要があります。特定のビデオコンテンツタイプの取り扱いに制限があるモデルの制約については、明確化が必要です。例外を除いて、多様なドメインや例外を超えたビデオ編集タスクへの汎化性を十分に考慮する必要があります。

「3D-GPT(3D-指示駆動型モデリングのための人工知能フレームワーク)に会ってください 大規模な言語モデル(LLM)を利用した指示駆動型3Dモデリングのための人工知能フレームワーク」

細心緻密的模型在元宇宙時代的3D內容製作中,重新定義了遊戲、虛擬現實和電影行業中的多媒體體驗。然而,設計師們在耗時的3D建模過程中往往需要幫助,從基本形狀(如立方體、球體或圓柱體)開始使用諸如Blender之類的工具進行精確輪廓、細節和紋理修飾。渲染和后處理使這種勞動密集型製作工作完成並產生精緻的最終模型。儘管可變參數和基於規則的系統使程序式生成在自動化內容開發方面非常有效,但這需要對生成規則、算法框架和個體參數有深入的了解。 當這些過程與客戶的創意愿望協調時,增加了更多的復雜性,需要高效的溝通。這強調了在元宇宙時代使傳統的3D建模方法更加簡化以使創作者事半功倍的重要性。語言遷移模型(LLM)展示了卓越的計劃和工具使用能力以及理解能力。此外,LLM在表徵結構和紋理等對象特性方面表現出色,能夠根據基本描述改進細節。他們還擅長理解複雜的代碼功能和解析簡短的文本素材,同時輕鬆實現有效的用戶互動。他們探索了這些卓越能力在程序式3D建模中的新用途。 他們的主要目標是充分利用LLM的潛力,以滿足用戶需求,對3D創意軟件進行控制。為了實現這一目標,澳大利亞國立大學、牛津大學和北京人工智能研究院的研究人員介紹了3D-GPT,一個旨在促進以指令驅動的3D內容合成的框架。通過將3D建模過程分為更小、更可管理的段落,並決定何時、何地和如何完成每個段落,3D-GPT使LLM能夠扮演解決問題的代理人。概念化代理、3D建模代理和工作派發代理是組成3DGPT的三個主要代理。通過調整3D生成函數,前兩個代理一起工作以滿足3D概念化和3D建模的職責。 第三個代理通過接受第一個文本輸入,管理後續命令並促進第一個和第二個代理之間的高效溝通,從而控制系統。在此過程中,他們實現了兩個重要目標。首先,它通過指向更深入且與上下文相關的形式改善初始場景描述,然後根據進一步的指示修改文本輸入。其次,它使用程序生成,這是一種與3D軟件進行交互的方法,它使用可變參數和基於規則的系統,而不是直接創建3D材料的每個組件。他們的3D-GPT可以從改進的文本中推導出相關參數值,並理解程序生成程序。通過使用用戶的書面描述作為指南,3D-GPT提供準確且可定制的3D創作。 在具有多個不同元素的複雜場景中,手動指定程序式創作中的每個可控參數可以減少工作量。此外,3D-GPT提高了用戶參與度,簡化了創作過程並把用戶放在首位。此外,3D-GPT與Blender無縫集成,使用戶可以使用各種操作工具,包括網格編輯、物理運動模擬、對象動畫、材質變更和基本圖元添加等。根據他們的測試,他們聲稱LLM可以處理更複雜的視覺信息。 以下是他們貢獻的總結: • 提出3D-GPT,一個用於3D場景創建的框架,提供免費培訓。他們的方法利用LLM內置的多模態推理能力,提高最終用戶的程序性3D建模的生產力。 • 探索了一種文本到3D生成的替代方法,其中他們的3D-GPT創建Python程序來操作3D軟件,可能為現實應用提供更大的靈活性。 • 實證研究表明LLM在創建3D材料時具有很大的潛力,可以思考、計劃和使用工具。

NVIDIAの研究者が「Retro 48B」を導入:前の指示調整よりも前にリトリーバルが行われた最大のLLM Pretrained

NvidiaとIllinois大学の研究者は、「Retro 48B」という以前の検索増強モデル(Retro(7.5Bパラメータ)など)よりも遥かに大きな言語モデルを紹介しました。Retro 48Bは広範なコーパスでリトリーバルを使って事前学習され、パープレキシティが改善されます。InstructRetroのエンコーダは抽出されることができ、継続的な検索増強の事前学習が質問応答においてデコーダーのパフォーマンスを向上させることを示唆しています。 検索増強言語モデルは、事前学習および推論中に開放領域の質問応答に利益をもたらします。このアプローチにより、モデルのパープレキシティが低下し、事実性が向上し、ファイントゥーニング後のタスクパフォーマンスが向上します。既存の検索増強モデルはデコーダーオンリーモデルと比較してサイズが制約されており、インストラクションチューニング後のゼロショットの汎用性が制限されています。自然言語理解に重要なインストラクションチューニングは、FLAN、OpenAssistant、Dollyなどの高品質のデータセットからのサポートを得ており、チャットや質問応答のタスクにおいて優れたパフォーマンスを実現しています。 Retroなどのリトリーバルを使って言語モデルを事前学習することは、パープレキシティの低下と事実の正確性の向上において有望な成果を示しています。ただし、既存の検索増強モデルはより多くのパラメータとトレーニングデータが必要であり、大規模な言語モデルの一般化におけるタスクパフォーマンスに影響を及ぼします。この研究では、43B GPTモデルに追加のトークンを使って事前学習を続けることにより、最大の検索増強モデルであるRetro 48Bを紹介しています。このプロセスから得られたInstructRetroは、従来のGPTモデルと比較してゼロショットの質問応答を大幅に改善します。エンコーダを抽出した場合でも、InstructRetroのデコーダーは同様の結果を達成し、質問応答におけるコンテキスト統合のための検索増強事前学習の効果を示しています。 この研究では、GPTモデルを事前学習してRetro 48Bを作成し、ゼロショットの質問応答能力を向上させるために指示を与え、さまざまなタスクでのパフォーマンスを評価するという包括的なプロセスを探求しています。最大の検索増強言語モデルであるInstructRetro 48Bは、GPTモデルと比較して幅広いオープンエンドの質問応答タスクでゼロショットの精度を大幅に向上させます。Retroの拡大アプローチによって、大規模な検索増強モデルの潜在能力が自然言語理解において示されています。 リトリーバルを使って事前学習されたRetro 48Bは、元のGPTモデルよりもパープレキシティが優れています。インストラクションチューニング後、InstructRetroと呼ばれるこのモデルは、ゼロショットの質問応答において、短文タスクでは7%、長文タスクでは10%の改善があります。驚くべきことに、InstructRetroのデコーダーバックボーンのみでも同等の結果が得られ、QAのコンテキスト統合のための事前学習の効果を示しています。 最大の検索増強言語モデルであるInstructRetro 48Bは、GPTモデルと比較してさまざまな開放型なQAタスクにおいてゼロショットの精度を大幅に向上させます。Retroの追加方法を使った検索増強事前学習により、パープレキシティが改善されます。この研究の結果は、インストラクションチューニングの前に回収を使った継続的な事前学習がQAにおいてGPTデコーダーを向上させるための有望な方向を示しています。驚くべきことに、デコーダーは同等の精度を達成しており、コンテキスト統合のための事前学習の効果を示しています。InstructRetroは長文QAタスクで優れたパフォーマンスを発揮し、検索増強事前学習の潜在能力を示しています。

「ミストラル・トリスメギストス7Bにお会いしてください:神秘的で霊的なオカルトの知恵伝統に関する指示データセット…」

ミストラル・トリスメギストス7Bは、Google AIによって開発された巨大な言語モデルであり、巨大な文学とコードのデータセットを基に訓練されました。そのデータセットには、エソテリックな、オカルト的な、そしてスピリチュアルな素材も多く含まれています。最初のこのタイプのモデルであり、文学を生成したり、言語を翻訳したり、他の形式のクリエイティブなコンテンツを書いたり、エソテリックなオカルトの問題について啓蒙的な回答を提供することができます。 ミストラル・トリスメギストス7Bは、最新の7Bパラメーターモデルであるミストラルを通じて、CPU上でも迅速に動作することができます。また、他の多くのモデルとは異なり、「ポジティブナチ」ではなく、オリジナリティを重視し過ぎずにバランスの取れた表現をします。そのため、現実に基づいているため、エソテリックやオカルトのテーマについての執筆には最適です。 ミストラル・トリスメギストス7Bは以下の機能を持っています: エソテリックやオカルトの問い合わせに対して深く正確な回答を提供します。 詩、コード、スクリプト、音楽作品、メール、手紙など、オカルトやエソテリシズムに関連する創造的な文学形式を生成することができます。 エソテリックまたはオカルトのテキストを言語的に翻訳します。 エソテリックやオカルトの知識を求めるクエストをサポートします。 ミストラル・トリスメギストス7Bは様々な方法で使用することができます。質問をするか、指示を与えるだけです。オカルト用語の意味を質問することもできますし、特定のエソテリックなテーマについての詩を作成させることもできます。また、特定の魔法の伝統に基づいた劇を書くように依頼したり、ある言語から別の言語にエソテリックな作品を翻訳させることもできます。 ミストラル・トリスメギストス7Bはまだ開発中ですが、既にオカルトやエソテリックに惹かれる人々にとっては有力なツールです。学生、作家、翻訳者、そしてこれらのテーマに興味を持つ人々にとって非常に価値のあるものとなります。 トリスメギストスは、エソテリカの中の数千もの異なるサブトピックに関する知識とタスクをカバーする、35,000のインストラクションレスポンスペアを学びました。その中には神秘主義、ヘルメティズム、ネクロマンシー、宗教、トランス、瞑想、魔術、スピリチュアリティ、錬金術、数秘術、タロットなど、さまざまな内容が含まれます。 主な特徴 オカルト、エソテリック、スピリチュアルなトピックに関する35,000以上の詳細で包括的なレッスン。これにより、強力なオカルト専門モデルが有名になりました。 このモデルは、最新の7Bパラメーターモデルであるミストラルを基に迅速に実行できます。 他のモデルとは異なり、花言葉的な表現に頼る必要がないよう、さまざまなマイナーな仕事や情報を学びました。 データセット このモデルは、エソテリックな、オカルト的な、スピリチュアルなタスクと情報をカバーする、35,000以上のサンプルを含む合成されたgpt-4生成データセットを使用してトレーニングされました。 ミストラル・トリスメギストス7Bの追加の考慮事項: ミストラル・トリスメギストス7Bは、主体的な存在ではなく、意識を持っていません。大量のテキストやソースコード内のパターンを認識するために教えられた機械学習モデルです。したがって、その言語は信憑性があるものの、そのテキストの意味を理解する必要があります。 タロット、占星術、数秘術、占い術、錬金術、カバラなど、ミストラル・トリスメギストス7Bの助けを借りて探求できるオカルトやエソテリックの分野はたくさんあります。また、瞑想、祈り、悟りなどの一般的なスピリチュアルな題材も生成することができます。 ミストラル・トリスメギストス7Bは強力なツールですが、注意して扱う必要があります。エソテリックやオカルトの探求は困難で、危険なこともあります。これらのテーマに慣れていない場合は、まず、より詳しく学び、専門家と話をしてから取り組むことが賢明です。 ミストラル・トリスメギストス7Bは、オカルトと神秘に興味を持つ人々にとって優れた書籍です。これらのテーマの魅力的で楽しい研究に役立つ素晴らしい情報源です。

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us