Learn more about Search Results 技術文書

「プロンプトチューニングとは何ですか?」

即興チューニングでは、注意深く設計された「プロンプト」と呼ばれるテキストを大規模言語モデル(LLM)に作成・入力しますこのプロンプトは、モデルの応答を本質的にガイドし、希望の出力スタイル、トーン、または内容に向かって誘導します従来のモデルのトレーニングとは異なり、大規模なデータセットでモデルを再トレーニングする必要があるのに対し、プロンプトのチューニングはわずかなセットのみが必要です

なぜプロンプトエンジニアリングは一時的な流行なのか

様々なメディアは、プロンプトエンジニアリングについて熱狂的に話しており、それを理想的な仕事のように思わせていますプログラムのコーディングを学ぶ必要もなく、深層学習、データセットなどの機械学習の概念に詳しい必要もありませんあなたも同意するでしょうが、あまりにも…

シリコンボレー:デザイナーがチップ支援のために生成AIを活用

今日公開された研究論文によれば、生成AIは、最も複雑なエンジニアリングプロジェクトの1つである半導体設計を支援できる方法を示しています。 この研究では、高度な専門分野の企業が、内部データを使用して大規模な言語モデル(LLM)を訓練し、生産性を向上させるアシスタントを作成することができることが示されています。 半導体設計は非常に困難な職業の一つです。最先端のチップであるNVIDIA H100 Tensor Core GPU(上記)は、人間の髪の毛の1万分の1の幅の通りよりも10,000倍細いストリート上に接続された数百億のトランジスタで構成された計画された都市のように見えます。 数多くのエンジニアリングチームが2年以上にわたり協力し、これらのデジタルメガシティを構築しています。 一部のグループはチップの全体的なアーキテクチャを定義し、他のグループはさまざまな超小型回路を作成・配置し、さらに別のグループはその作業をテストします。それぞれの作業には専門的な方法、ソフトウェアプログラム、コンピュータ言語が必要です。 LLMに向けた広範なビジョン 「私は大規模な言語モデルが時間の経過とともに、あらゆるプロセスを支援することになると考えています」と、筆頭著者であるNVIDIA ResearchのディレクターであるMark Ren氏は述べています。 NVIDIAの最高科学責任者であるBill Dally氏は、この論文をサンフランシスコで開催された年次の電子設計自動化(EDA)に関する国際会議で発表しました。 「この取り組みは、特に高度な専門分野でも、内部データを使用して有用な生成AIモデルを訓練することができることを示しています。これは、半導体設計の複雑な作業にLLMsを適用するための重要な一歩です」とDally氏は述べました。 ChipNeMoの登場 この論文では、NVIDIAのエンジニアが、社内データを使用して会社の内部データを生成し最適化するためのカスタムLLMであるChipNeMoを作成した方法について詳しく説明されています。 長期的には、エンジニアはチップ設計の各段階に生成AIを適用し、全体的な生産性を大幅に向上させることを期待しています。Ren氏はEDA分野で20年以上のキャリアを持つエンジニアの一人です。 NVIDIAのエンジニアによる可能なユースケースの調査の結果、研究チームは3つのユースケースを開始することを選びました:チャットボット、コード生成器、および分析ツールです。 初期のユースケース 後者は、既知のバグの維持に関連する時間のかかるタスクを自動化するツールであり、これまでで最も好評を得ています。 GPUアーキテクチャとデザインに関する質問に回答するプロトタイプチャットボットは、早期のテストで多くのエンジニアが技術文書を迅速に見つけるのに役立ちました。 コード生成ツールは、チップ設計のソフトウェアの一部を書くのに役立ちます。…

クロスヘアに捧げられた ジェネレーティブAI:CISOたちが戦うサイバーセキュリティ

ChatGPTと大規模な言語モデル(LLM)は、生成型AIが多くのビジネスプロセスにどのように影響を与えるかの初期の兆候です

チャットテンプレート:静かなパフォーマンスキラーへの終止符

チャットモデルを幽霊がさまよっている – 不正なフォーマットの幽霊が! 要約 チャットモデルは、会話を単一のトークン可能な文字列に変換するための非常に異なるフォーマットで訓練されています。訓練されたフォーマットとは異なるフォーマットを使用すると、通常は重大な無音のパフォーマンス低下を引き起こしますので、訓練時に使用されたフォーマットとの一致は非常に重要です!Hugging Faceのトークナイザには、モデルが訓練されたチャット形式を保存するために使用できるchat_template属性があります。この属性には、会話履歴を正しくフォーマットされた文字列に変換するためのジンジャーテンプレートが含まれています。コードでチャットテンプレートを作成および適用する方法については、技術文書をご覧ください。 導入 もしも、🤗Transformersライブラリに詳しいのであれば、おそらく以下のようなコードを書いたことがあるはずです: tokenizer = AutoTokenizer.from_pretrained(checkpoint)model = AutoModel.from_pretrained(checkpoint) トークナイザとモデルを同じチェックポイントからロードすることで、モデルが期待する方法で入力がトークン化されることが保証されます。異なるモデルのトークナイザを選ぶと、入力のトークナイズは完全に異なる可能性があり、その結果としてモデルのパフォーマンスに重大な損傷が生じます。これをdistribution shift(分布シフト)と呼びます – モデルは一つの分布(訓練時に使用されたトークナイゼーション)のデータを学習しており、突然完全に異なる分布にシフトしたということです。 モデルを微調整するか、推論に直接使用する場合、分布シフトを最小限に抑え、与えた入力を可能な限り訓練時と似たものにすることは常に良いアイデアです。通常の言語モデルでは、これを行うのは比較的容易です – トークナイザとモデルを同じチェックポイントからロードするだけで準備完了です。 しかし、チャットモデルの場合は少し異なります。これは、「チャット」とは1つのテキスト文字列だけでシンプルにトークナイズできるものではなく、メッセージのシーケンスであり、各メッセージにはrole(役割)とcontent(メッセージの実際のテキスト)が含まれています。最も一般的なのは、ユーザーから送信されたメッセージに対しては「user」、モデルが書いた応答には「assistant」、さらにオプションで会話の開始時に与えられる高レベルの指示には「system」の役割を持たせることです。 もしもこれが少し抽象的に感じられる場合、以下の例のチャットをご覧ください: [ {"role":…

『倫理と社会ニュースレター#5:ハグフェイスがワシントンに行くと、他の2023年夏の考え事』

人工知能(AI)における「倫理」について知っておくべき最も重要なことの一つは、それが「価値観」に関連しているということです。倫理は何が正しくて何が間違っているかを教えてくれるのではなく、透明性、安全性、公正などの価値観の語彙と優先順位を定めるための枠組みを提供します。今年の夏、私たちはAIの価値観についての理解を欧州連合、イギリス、アメリカの立法府に伝え、AIの規制の未来を形作るのに役立ちました。ここで倫理が光を放つのです:法律がまだ整っていないときに前進するための道筋を切り開くのに役立つのです。 Hugging Faceの主要な価値であるオープンさと責任を守るために、私たちはここで私たちが言ったことや行ったことのコレクションを共有しています。これには、私たちのCEOであるクレムが米国議会に対する証言や米国上院AI Insight Forumでの発言、E.U. AI Actに関するアドバイス、NTIAに対するAIの責任に関するコメント、そして私たちのChief Ethics Scientistであるメグの民主党議員団に対するコメントなどが含まれています。これらの議論の多くで共通していたのは、なぜAIのオープンさが有益であるのかという質問でした。私たちはこの質問に対する私たちの回答のコレクションをこちらで共有しています。 Hugging Faceのコア価値である民主化に則り、私たちは多くの時間を公に話すことに費やしてきました。そしてAIの世界で今起こっていることを説明するためにジャーナリストと対話する機会を与えられています。これには以下のものが含まれます: サーシャのAIのエネルギー使用と炭素排出に関するコメント(The Atlantic、The Guardian、2回、New Scientist、The Weather Network、The Wall Street Journal、2回)およびWall Street Journal op-edの一部の執筆;AIの終末論的なリスクに対する考え(Bloomberg、The Times、Futurism、Sky…

「野心的なAI規制に対する力強いプロセス:オックスフォード研究からの3ステップソリューション」

「もしアカウンタブルマネージャーやプロダクトオーナー、プロジェクトマネージャー、もしくはデータサイエンティストで、AIプロジェクトに関与している場合、Oxford ResearchはあなたをAI規制の重要な関係者として特定しました先行スタートを切りましょう…」

「複雑なエンジニアリング図面のためのOCRの使用」 「複雑なエンジニアリング図面のためのOCRの使用」という文になります

光学文字認識(OCR)は、ビジネスが文書処理を自動化する方法を革新しましたただし、技術の品質と精度はすべてのアプリケーションに適しているわけではありません処理される文書が複雑であるほど、精度は低下します特にエンジニアリング図面には特に当てはまります箱から出してすぐのOCR技術では、[…]

「開発者向けの15以上のAIツール(2023年9月)」

GitHub Copilot GitHub Copilotは、市場をリードするAIパワードのコーディングアシスタントです。開発者がより効率的に優れたコードを作成するために設計されており、CopilotはOpenAIのCodex言語モデルを基盤に動作しています。このモデルは、自然言語と広範な公開コードデータベースでトレーニングされており、洞察に富んだ提案を行うことができます。コードや関数の完全な行を補完し、コメントの作成やデバッグ、セキュリティチェックの支援など、開発者にとって貴重なツールとなっています。 Amazon CodeWhisperer AmazonのCodeWhispererは、Visual StudioやAWS Cloud9などのさまざまなIDEでリアルタイムのコーディングの推奨を提供する機械学習駆動のコードジェネレータです。大規模なオープンソースのコードデータセットでトレーニングされており、スニペットから完全な関数まで提案し、繰り返しのタスクを自動化し、コードの品質を向上させます。効率とセキュリティを求める開発者にとっての利点です。 Notion AI Notionのワークスペース内で、AIアシスタントのNotionがさまざまな文書作成に関連するタスクをサポートします。創造性、修正、要約など、さまざまなタスクで執筆の速度と品質を向上させます。Notion AIは、ブログやリストからブレストセッションやクリエイティブライティングまで、幅広い執筆タスクを自動化するために使用できるAIシステムです。NotionのAI生成コンテンツは、ドラッグアンドドロップのテキストエディタを使用して簡単に再編成や変換ができます。 Stepsize AI Stepsize AIは、チームの生産性を最適化するために設計されたコラボレーションツールです。プロジェクトの履歴やタスク管理者として機能し、Slack、Jira、GitHubなどのプラットフォームと統合して、更新を効率化し、意思疎通のミスを防ぎます。主な機能には、活動の統一された要約、クエリへの即時回答、堅牢なデータプライバシーコントロールがあります。 Mintlify Mintlifyは、お気に入りのコードエディタで直接コードドキュメントを自動生成する時間を節約するツールです。Mintlify Writerをクリックするだけで、関数のためのよく構造化されたコンテキストに即した説明を作成します。開発者やチームに最適で、複雑な関数のための正確なドキュメントを生成することで、効率と正確さが評価されています。 Pieces for Developers Pieces…

「EU AI Actについて今日関心を持つべき理由」

「MLおよびAI業界で働く私たちのほとんどは、新しい規制に関する見出しを見て流し読みするでしょう新しい規制は『法律用語』というカテゴリに属しますこの用語は、どんな規制でも表現されるものです…」

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us